【左偏树+贪心】BZOJ1367-[Baltic2004]sequence
【题目大意】
给定一个序列t1,t2,...,tn ,求一个递增序列z1<z2<...<zn , 使得R=|t1−z1|+|t2−z2|+...+|tn−zn| 的值最小。本题中,我们只需要求出这个最小的R值。
【思路】
-这个比加延迟标记的左偏树调试得还久……WA到死……
如果ti是递增的,我们只需要取zi=ti;
如果ti是递减的,我们只需要取ti的中位数。
所以我们将ti分割成若干个区间,维护每个区间的中位数。对于[L,R]的区间,我们存放[L,(L+R)/2]在堆中。具体如下操作:
(1)加入ti,将它作为一个单独的区间。
(2)比较前一个区间的中位数(即当前栈顶的最大值)和当前区间的中位数,如果前者小于后者,就将后者压入栈中。否则将前者弹出,和后者合并。注意的是如果两个区间的大小均为奇数(注意这里说的是区间大小,即L-R+1,而不是维护中位数的堆的大小),比如3和5合并,我们只需要存4个数字,而直接合并堆中存了5个,所以弹出堆顶。
(3)把合并后的堆作为当前区间,继续操作。
某种意义上的贪心思想。
我用的是左偏树,在左偏树里同时记录了L、R、size。
不过这样操作只会得到不下降,而不是递增。据说一开始输入t[i]时,t[i]-=i即可,没有会到意思orz
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<cmath>
using namespace std;
const int MAXN=+;
typedef long long ll;
struct node
{
int key,dis,size;
int lson,rson,father;
int L,R; }ltree[MAXN];
int n,z[MAXN];
stack<int> S; void pushup(int x)
{
int l=ltree[x].lson,r=ltree[x].rson;
ltree[x].size=+ltree[l].size+ltree[r].size;
} void build(int rt,int x)
{
ltree[rt].key=x;
ltree[rt].dis=(rt==)?-:;
ltree[rt].size=(rt==)?:;
//不要忘了当Rt=0的时候size为0
ltree[rt].lson=ltree[rt].rson=;
ltree[rt].father=ltree[rt].L=ltree[rt].R=rt;
} int merge(int x,int y)
{
if (x== || y==) return (x+y);
if (ltree[x].key<ltree[y].key) swap(x,y);
ltree[x].L=min(ltree[x].L,ltree[y].L);
ltree[x].R=max(ltree[x].R,ltree[y].R);
ltree[x].rson=merge(ltree[x].rson,y);
int &l=ltree[x].lson,&r=ltree[x].rson;
if (ltree[l].dis<ltree[r].dis) swap(l,r);
if (r==) ltree[x].dis=;
else ltree[x].dis=ltree[r].dis+;
pushup(x);
return x;
} int del(int rt)
{
int l=ltree[rt].lson,r=ltree[rt].rson;
ltree[rt].dis=;
ltree[rt].size=;
ltree[rt].lson=ltree[rt].rson=;
int ret=merge(l,r);
ltree[ret].L=ltree[rt].L;
ltree[ret].R=ltree[rt].R;
return ret;
} void init()
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&z[i]),z[i]-=i;
for (int i=;i<=n;i++) build(i,z[i]);
build(,);
} void solve()
{
int before=z[];
S.push();
for (int i=;i<=n;i++)
{
int now=i;
while (!S.empty())
{
int tail=S.top();
if (ltree[now].key<ltree[tail].key)
{
S.pop();
int tmp=merge(tail,now);
now=tmp;
while (ltree[now].size*>(ltree[now].R-ltree[now].L+)) now=del(now);
//不要忘记了这里是ltree[now].R-ltree[now].L+2,一开始写成了+1
if (S.empty())
{
S.push(now);
break;
}
}
else
{
S.push(now);
break;
}
}
}
ll ans=;
while (!S.empty())
{
int now=S.top();S.pop();
for (int i=ltree[now].L;i<=ltree[now].R;i++) ans+=abs(z[i]-ltree[now].key);
}
printf("%lld",ans);
} int main()
{
init();
solve();
return ;
}
【左偏树+贪心】BZOJ1367-[Baltic2004]sequence的更多相关文章
- bzoj1367 [Baltic2004]sequence 左偏树+贪心
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1367 题解 先考虑条件为要求不下降序列(不是递增)的情况. 那么考虑一段数值相同的子段,这一段 ...
- BZOJ1367 [Baltic2004]sequence 堆 左偏树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1367 题意概括 Description Input Output 一个整数R 题解 http:// ...
- BZOJ1367 [Baltic2004]sequence 【左偏树】
题目链接 BZOJ1367 题解 又是一道神题,, 我们考虑一些简单的情况: 我们先假设\(b_i\)单调不降,而不是递增 对于递增序列\(\{a_i\}\),显然答案\(\{b_i\}\)满足\(b ...
- 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)
1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...
- 【CF671D】Roads in Yusland(贪心,左偏树)
[CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...
- BZOJ1367 BOI2004Sequence(左偏树)
首先考虑把bi和ai同时减i,问题变为非严格递增.显然如果a是一个递减序列,b序列所有数都取其中位数最优.于是划分原序列使得每一部分递减,然后考虑合并相邻两段.如果前一段的中位数<=后一段的中位 ...
- 洛谷P4331 [BOI2004] Sequence 数字序列 [左偏树]
题目传送门 数字序列 题目描述 给定一个整数序列 a1,a2,⋅⋅⋅,an ,求出一个递增序列 b1<b2<⋅⋅⋅<bn ,使得序列 ai 和 bi 的各项之差的绝对 ...
- [BOI2004]Sequence 数字序列(左偏树)
PS:参考了黄源河的论文<左偏树的特点及其应用> 题目描述:给定一个整数序列\(a_1, a_2, - , a_n\),求一个递增序列\(b_1 < b_2 < - < ...
- Luogu P4331 [BOI2004]Sequence 数字序列 (左偏树论文题)
清晰明了%%% Fairycastle的博客 个人习惯把size什么的存在左偏树结点内,这样在外面好写,在里面就是模板(只用修改update). 可以对比一下代码(好像也差不多-) MY CODE # ...
随机推荐
- About configuration center of Apollo
A comparison among different configuration management tools Use of Apollo configuration management p ...
- php遍历路径——php经典实例
php遍历路径——php经典实例 代码: <html> <head> <title>遍历目录</title> <meta charset=&quo ...
- nginx 配置代理某个路径
location /test{ proxy_pass http://localhost:8765/test; proxy_set_header Host $http_host; } 其中红色的那句可以 ...
- Feather包实现数据框快速读写,你值得拥有
什么是Feather? Feature是一种文件格式,支持R语言和Python的交互式存储,速度更快.目前支持R语言的data.frame和Python pandas 的DataFrame. Feat ...
- pycharts实现可视化
https://blog.csdn.net/u012535605/article/details/80677791http://pyecharts.org/#/zh-cn/prepare (中文官网 ...
- django【ORM】 通过外键字段找对应类
两个方法其实是一种,用哪个都行,看实例: 方法一: 从list_filter中的字符串,找到model对象的字段,然后得到这个外键对应的类 循环,把list_filter中对应的类所有对象 方法二 ...
- makefile初步制作,arm-linux- (gcc/ld/objcopy/objdump)详解【转】
转自:http://www.cnblogs.com/lifexy/p/7065175.html 在linux中输入vi Makefile 来实现创建Makefile文件 注意:命令行前必须加TAB键 ...
- mysql 创建数据库的时候选择 utf8 bin 和 utf8 ci的区别
utf8 ci 不区分大小写: utf8 bin 区分大小写:
- java网络编程三次握手四次挥手
第一次握手:client设置syn=1,随机产生一个序列号seq=x,将数据包发送到server.client进入syn_send状态, 等待server确认. 第二次握手:server查看clien ...
- SVN的使用、分支合并及解决冲突详解
一.什么是SVN SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS. 二.SVN的下载安装 下载地址:http ...