E. Fairy
time limit per test

1.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Once upon a time there lived a good fairy A. One day a fine young man B came to her and asked to predict his future. The fairy looked into her magic ball and said that soon the fine young man will meet the most beautiful princess ever and will marry her. Then she drew on a sheet of paper n points and joined some of them with segments, each of the segments starts in some point and ends in some other point. Having drawn that picture, she asked the young man to erase one of the segments from the sheet. Then she tries to colour each point red or blue so, that there is no segment having points of the same colour as its ends. If she manages to do so, the prediction will come true. B wants to meet the most beautiful princess, that's why he asks you to help him. Find all the segments that will help him to meet the princess.

Input

The first input line contains two integer numbers: n — amount of the drawn points and m — amount of the drawn segments (1 ≤ n ≤ 104, 0 ≤ m ≤ 104). The following m lines contain the descriptions of the segments. Each description contains two different space-separated integer numbers vu (1 ≤ v ≤ n, 1 ≤ u ≤ n) — indexes of the points, joined by this segment. No segment is met in the description twice.

Output

In the first line output number k — amount of the segments in the answer. In the second line output k space-separated numbers — indexes of these segments in ascending order. Each index should be output only once. Segments are numbered from 1 in the input order.

Examples
input

Copy
4 4
1 2
1 3
2 4
3 4
output
4
1 2 3 4
input

Copy
4 5
1 2
2 3
3 4
4 1
1 3
output
1
5
题目大意:给定一个无向图,问删哪些边之后这个图变成二分图。求的是一个边的集合,实际上只删一条边.
分析:挺好的一道题.
   一个图是二分图的充要条件是不存在奇环.将一条奇环上的边删去就能破坏掉这个奇环,如果要破坏掉所有的奇环,那么删的边就必须是所有奇环的交集.
   仅仅只是删掉交集这么简单吗?如果一条边同时在偶环和奇环上,删掉这条边后偶环和奇环就会重新组合成一个奇环.那么删的这条边就必须满足两个条件:1.在所有奇环的交集中. 2.不在任何偶环上.
   那么找环就好了.天真的我以为直接dfs+栈维护一下就好了.这道题的环是会重叠的,这种做法行不通......换一种做法,每个点记录第一条连向这个点的边的编号(其实记录的就是树边),那么可以把边转换为点,在点上对树边进行操作,非树边需要特判一下.
   每次找到一条非树边,这条边连接的两个点是u,v,如果构成了一个奇环,就在维护奇环线段树中把u,v这条链+1,否则在维护偶环线段树中把u,v这条链+1.怎么提取这条链?树链剖分!
   最后是一些细节:如果没有奇环,所有的边都满足条件;如果奇环只有1个,那么那个奇环的非树边要考虑进来;维护的是一个图而不是树,在dfs时只考虑树边!
#include <stack>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ; int n,m,head[maxn],to[maxn],nextt[maxn],id[maxn],tot = ,vis[maxn],cnta,ans,cntb,anss[maxn];
int bianhao[maxn],h[maxn],son[maxn],top[maxn],pos[maxn],sizee[maxn],cnt,fa[maxn],flag;
int L[maxn << ],R[maxn << ],sum1[maxn << ],sum2[maxn << ],tag1[maxn << ],tag2[maxn << ]; struct node
{
int x,y;
}e[maxn]; void add(int x,int y)
{
to[tot] = y;
nextt[tot] = head[x];
head[x] = tot++;
} void dfs1(int u,int faa)
{
h[u] = h[faa] + ;
sizee[u] = ;
fa[u] = faa;
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (v == faa || h[v])
continue;
bianhao[v] = (i / ) + (i % );
vis[(i / ) + (i % )] = ;
dfs1(v,u);
sizee[u] += sizee[v];
if (sizee[v] > sizee[son[u]])
son[u] = v;
}
} void dfs2(int u,int topp)
{
pos[u] = ++cnt;
id[cnt] = u;
top[u] = topp;
if (son[u])
dfs2(son[u],topp);
for (int i = head[u];i;i = nextt[i])
{
int v = to[i];
if (v == fa[u] || v == son[u] || fa[v] != u)
continue;
dfs2(v,v);
}
} void build(int o,int l,int r)
{
L[o] = l;
R[o] = r;
if (l == r)
return;
int mid = (l + r) >> ;
build(o * ,l,mid);
build(o * + ,mid + ,r);
} void pushup(int o)
{
sum1[o] = sum1[o * ] + sum1[o * + ];
sum2[o] = sum2[o * ] + sum2[o * + ];
} void pushdown(int o)
{
if (tag1[o])
{
tag1[o * ] += tag1[o];
tag1[o * + ] += tag1[o];
sum1[o * ] += tag1[o] * (R[o * ] - L[o * ] + );
sum1[o * + ] += tag1[o] * (R[o * + ] - L[o * + ] + );
tag1[o] = ;
}
if (tag2[o])
{
tag2[o * ] += tag2[o];
tag2[o * + ] += tag2[o];
sum2[o * ] += tag2[o] * (R[o * ] - L[o * ] + );
sum2[o * + ] += tag2[o] * (R[o * + ] - L[o * + ] + );
tag2[o] = ;
}
} void update1(int o,int l,int r,int x,int y)
{
if(x <= l && r <= y)
{
sum1[o] += (r - l + );
tag1[o]++;
return;
}
pushdown(o);
int mid = (l + r) >> ;
if (x <= mid)
update1(o * ,l,mid,x,y);
if (y > mid)
update1(o * + ,mid + ,r,x,y);
} void update2(int o,int l,int r,int x,int y)
{
if(x <= l && r <= y)
{
sum2[o] += (r - l + );
tag2[o]++;
return;
}
pushdown(o);
int mid = (l + r) >> ;
if (x <= mid)
update2(o * ,l,mid,x,y);
if (y > mid)
update2(o * + ,mid + ,r,x,y);
} void change(int x,int y,int tagg)
{
if (h[x] < h[y])
swap(x,y);
while (top[x] != top[y])
{
if (h[top[x]] < h[top[y]])
swap(x,y);
int t = top[x];
if (tagg == )
update1(,,n,pos[t],pos[x]);
else
update2(,,n,pos[t],pos[x]);
x = fa[t];
}
if (x == y)
return;
if (h[x] < h[y])
swap(x,y);
if (tagg == )
update1(,,n,pos[y] + ,pos[x]); //为什么要+1?因为实际维护的是边.
else
update2(,,n,pos[y] + ,pos[x]);
} int query1(int o,int l,int r,int v)
{
if (l == r)
return sum1[o];
pushdown(o);
int mid = (l + r) >> ;
if (v <= mid)
return query1(o * ,l,mid,v);
else
return query1(o * + ,mid + ,r,v);
} int query2(int o,int l,int r,int v)
{
if (l == r)
return sum2[o];
pushdown(o);
int mid = (l + r) >> ;
if (v <= mid)
return query2(o * ,l,mid,v);
else
return query2(o * + ,mid + ,r,v);
} int main()
{
scanf("%d%d",&n,&m);
for (int i = ; i <= m; i++)
{
int x,y;
scanf("%d%d",&x,&y);
e[i].x = x;
e[i].y = y;
add(x,y);
add(y,x);
}
for (int i = ; i <= n; i++)
if (!h[i])
dfs1(i,),dfs2(i,i);
build(,,n);
for (int i = ; i <= m; i++)
{
if (!vis[i])
{
int x = e[i].x,y = e[i].y;
if (abs(h[x] - h[y]) % == ) //偶环
{
cntb++;
change(x,y,-);
}
else
{
cnta++;
flag = i;
change(x,y,);
}
}
}
if (cnta == )
{
for (int i = ; i <= m; i++)
anss[++ans] = i;
}
else
{
if (cnta == )
anss[++ans] = flag;
for (int i = ; i <= n; i++)
{
if (query1(,,n,pos[i]) == cnta && query2(,,n,pos[i]) == )
anss[++ans] = bianhao[i];
}
sort(anss + ,anss + + ans);
}
printf("%d\n",ans);
for(int i = ; i <= ans; i++)
printf("%d ",anss[i]);
printf("\n"); return ;
}
    

Codeforces 19.E Fairy的更多相关文章

  1. codeforces 19 D. Points(线段树+set二分)

    题目链接:http://codeforces.com/contest/19/problem/D 题意:给出3种操作:1)添加点(x,y),2)删除点(x,y),3)查询离(x,y)最近的右上方的点. ...

  2. Codeforces Round #404 (Div. 2) C. Anton and Fairy Tale 二分

    C. Anton and Fairy Tale 题目连接: http://codeforces.com/contest/785/problem/C Description Anton likes to ...

  3. Codeforces Gym100735 I.Yet another A + B-Java大数 (KTU Programming Camp (Day 1) Lithuania, Birˇstonas, August 19, 2015)

    I.Yet another A + B You are given three numbers. Is there a way to replace variables A, B and C with ...

  4. Codeforces Gym100735 G.LCS Revised (KTU Programming Camp (Day 1) Lithuania, Birˇstonas, August 19, 2015)

    G.LCS Revised   The longest common subsequence is a well known DP problem: given two strings A and B ...

  5. Codeforces Gym100735 E.Restore (KTU Programming Camp (Day 1) Lithuania, Birˇstonas, August 19, 2015)

    E - Restore Given a matrix A of size N * N. The rows are numbered from 0 to N-1, the columns are num ...

  6. Educational Codeforces Round 19 A, B, C, E(xjb)

    题目链接:http://codeforces.com/contest/797 A题 题意:给出两个数n, k,问能不能将n分解成k个因子相乘的形式,不能输出-1,能则输出其因子: 思路:将n质因分解, ...

  7. 【19.77%】【codeforces 570D】Tree Requests

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  8. 【19.46%】【codeforces 551B】ZgukistringZ

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  9. 【codeforces 785C】Anton and Fairy Tale

    [题目链接]:http://codeforces.com/contest/785/problem/C [题意] 容量为n的谷仓,每一天都会有m个谷子入仓(满了就视为m);第i天 会有i只鸟叼走i个谷子 ...

随机推荐

  1. DotNetOpenAuth Part 1 : Authorization 验证服务实现及关键源码解析

    DotNetOpenAuth 是 .Net 环境下OAuth 开源实现框架.基于此,可以方便的实现 OAuth 验证(Authorization)服务.资源(Resource)服务.针对 DotNet ...

  2. mongoDB操作2

    一.find操作 MongoDB中使用find来进行查询,通过指定find的第一个参数可以实现全部和部分查询. 1.查询全部 空的查询文档{}会匹配集合的全部内容.如果不指定查询文档,默认就是{}. ...

  3. 调试和开发npm模块的方式

    ln -s(软连接) 假设my-project是运行npm模块的项目,vue-router是我们需要调试的npm模块 将vue-router下载到与my-project同级目录中. git clone ...

  4. php命名空间学习笔记。

    为什么要用命名空间? 在PHP中,命名空间用来解决在编写类库或应用程序时创建可重用的代码如类或函数时碰到的两类问题: 用户编写的代码 与  PHP内部的类/函数/常量或第三方类/函数/常量之间的名字冲 ...

  5. scrum立会报告+燃尽图(第二周第七次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2252 一.小组介绍 组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶.公冶 ...

  6. Xftp安装和使用的视频录制方法

    内容: 1.使用工具 2.操作步骤及方法 视频地址: http://v.youku.com/v_show/id_XMzEwNjg2MTg2NA==.html?spm=a2h3j.8428770.341 ...

  7. C#从一个窗体传递参数到另一个窗体的链接

    http://blog.sina.com.cn/s/blog_60d69ce00100eldt.html

  8. ASP.NET Core 中的 Razor 页面介绍

    标题:ASP.NET Core 中的 Razor 页面介绍 地址:https://docs.microsoft.com/zh-cn/aspnet/core/razor-pages/index?view ...

  9. 第5章 Linux 常用网络指令

    网络参数设定使用的指令 手动/自动设定与启动/关闭 IP 参数: ifconfig, ifup, ifdown ifconfig :查询.设定网络卡与 IP 网域等相关参数:ifup, ifdown: ...

  10. MySQL 备份和恢复 理论知识

    为什么要备份 数据无价   制定备份策略的注意点 1:可容忍丢失多少数据     2:恢复需要在多长时间内完成     3:备份的对象   数据.二进制日志和InnoDB的事务日志.SQL代码(存储过 ...