洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM
题目描述
for i=1 to n
for j=1 to n
sum+=gcd(i,j)
给出n求sum. gcd(x,y)表示x,y的最大公约数.
输入输出格式
输入格式:
n
输出格式:
sum
输入输出样例
输入样例#1:
2
输出样例#1:
5
说明
数据范围 30% n<=3000 60% 7000<=n<=7100 100% n<=100000
Solution
这道题的做法貌似很多...如果你同时会狄利克雷卷积和莫比乌斯反演的话也可以强行反演一波,反正蒟蒻我是不会卷的,所以在这里介绍另外一种做法
一个式子描述题意\(ans=\sum _{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\)
直接暴力肯定是不行的,我们想一下有没有办法求出一个数它作为\(gcd\)的贡献呢?
对于两个数\(gcd(a,b)=1\to gcd(ka,kb)=k(ka<=n,kb<=n)\),所以k作为\(gcd\)的贡献就是\(gcd(x,y)=k\)的数对的对数,还不准确,因为数对\((x,y),(y,x)\),分别对答案都有贡献,但x=y的情况只能算一次,所以是 数对的个数*2-1,那么关键就在于怎么快速算出这个对数
我们发现\(n\)以内\(gcd\)为\(k\)的对数,实际上就是\(\lfloor\frac{n}{k}\rfloor\)以内gcd为1的数对的对数,这其实就是\(\lfloor\frac{n}{k}\rfloor\)以内每个数的欧拉函数的值之和,即\(2\times \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\phi(i)-1\),这个对数*数值就是每个数的贡献
线性筛一遍欧拉函数求前缀和就可以了....
Code
#include<bits/stdc++.h>
#define in(i) (i=read())
#define il extern inline
#define rg register
#define mid ((l+r)>>1)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define lol long long
using namespace std;
const lol N=1e5+10;
lol read() {
lol ans=0, f=1; char i=getchar();
while (i<'0' || i>'9') {if(i=='-') f=-1; i=getchar();}
while (i>='0' && i<='9') ans=(ans<<1)+(ans<<3)+(i^48), i=getchar();
return ans*f;
}
lol n,ans,cnt,vis[N],prime[N],phi[N]={0,1};
void init() {
for (lol i=2;i<=N-10;i++) {
if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
for (lol j=1;j<=cnt && prime[j]*i<=N-10;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) {phi[i*prime[j]]=phi[i]*prime[j]; break;}
else phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}for (lol i=1;i<=N-10;i++) phi[i]+=phi[i-1];
}
int main()
{
in(n); init();
for (lol i=1;i<=n;i++) ans+=(2*phi[n/i]-1)*i;
cout<<ans<<endl;
}
洛谷P2398 GCD SUM (数学)的更多相关文章
- 洛谷P2398 GCD SUM [数论,欧拉筛]
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...
- 洛谷P2398 GCD SUM
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...
- 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568
https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...
- 洛谷 P2398 GCD SUM 题解
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
- P2398 GCD SUM
P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- 洛谷P1445 [Violet] 樱花 (数学)
洛谷P1445 [Violet] 樱花 题目背景 我很愤怒 题目描述 求方程 1/X+1/Y=1/(N!) 的正整数解的组数,其中N≤10^6. 解的组数,应模1e9+7. 输入输出格式 输入格式: ...
随机推荐
- 剑指 Offer——数字在排序数组中出现的次数
1. 题目 2. 解答 时间复杂度为 \(O(n)\) 的算法,顺序遍历数组,当该数字第一次出现时开始记录次数. class Solution { public: int GetNumberOfK(v ...
- Python 深浅复制
(一)浅复制 复制列表最简单的方式是使用内置类型的构造方法: >>> l1 = [1, [2, 3], (4, 5)] >>> l2 = list(l1) > ...
- PSP DAILY软件功能说明书
PSP DAILY软件功能说明书 一.开发背景 你在完成了一周的软件工程作业后,需要提交一个PSP图表,里面有4项,如下所示: 1.本周PSP表格,包含每项任务的开始.中断.结束.最终时间,格式如下: ...
- 每日Scrum--No.3
Yesterday:帮着队友一起打开地图 Today:学习迪杰斯特拉算法,试着编写程序代码 Problem:语法逻辑出错,在执行的时候,有的时候出现死循环,有的时候屏幕出现null和乱码.语句的编写有 ...
- 软工实践-Alpha 冲刺 (5/10)
队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 已经解决登录注册等基本功能的界面. 完成了主界面的基本布局 ...
- 有关rand(),srand()产生随机数学习总结
看到夏雪冬日的有关rand()和srand()产生随机数的总结,挺好的,学习了,然后又有百度其他人的成果,系统总结一下.本文转自夏雪冬日:http://www.cnblogs.com/heyongga ...
- Windows Forms编程实战学习:第二章 欢迎使用Visual Studio
第二章 欢迎使用Visual Studio 1,AssemblyInfo文件 包含程序集的属性,向应用程序添加元数据 [assembly:<attribute>(<setting&g ...
- 复利计算C语言转java的相关代码
static void principal()// 计算本金 { int N, m; double i, F, P; System.out.printf("复利终值:"); F = ...
- ssh: Could not resolve hostname问题终于解决了?
1.如果系统为64位,无法启动启动hdfs: ./sbin/start-dfs.sh.并有以下错误: sed: -e expression #1, char 6: unknown option to ...
- Q3 大型科技公司季报
1. alphabet Alphabet(谷歌母公司)今天发布了截至9月30日的2018财年第三季度财报.报告显示,Alphabet第三季度总营收为337.40亿美元,比上年同期的277.72亿美元增 ...