只出现一次的数字 [ LeetCode ]
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,1]
输出: 1
示例 2:
输入: [4,1,2,1,2]
输出: 4
以上是原题
OK,先找出题目中的重点要求:
1、线性时间复杂度:要求我们的代码时间复杂度最高为O(n),不能有嵌套循环等。
2、不使用额外空间:要求空间复杂度最高为O(1)。
除此之外,还有重要的信息:
- 除了某个元素只出现一次以外,其余每个元素均出现两次。
这个条件非常关键,一开始自己审题不清楚没注意到均出现两次这个关键点,按照其他元素出现多次的情况处理了,这样导致思路受限很多。
开始解题:
方法一(比较法):
思路:先对数组进行排序,然后对 nums[i] 和 nums[i + 1]进行比较,如相等,i += 2,继续下一组比较,直到取到不相等的一组。
注意:首先这个数组的长度肯定是奇数(目标数字只出现一次,其他所有数字出现两次),所以如果上述步骤没有找到不相等的一组数,那么肯定是数组的最后一个数字是单独出现的。
代码如下:
public static int singleNumber(int[] nums) {
Arrays.sort(nums); // 排序数组
for (int i = 0; i < nums.length - 1; i += 2) {
// 找到不相等的一组,直接返回
if (nums[i] != nums[i + 1]) {
return nums[i];
}
}
// 如果没有找到不相等的一组数据,直接返回数组的最后一个数字
return nums[nums.length - 1];
}
方法二(去重法):
思路:利用HashSet的特性,删除重复的数组元素,最后剩下一个单独的元素,返回即可。
直接上代码:
public static int singleNumber(int[] nums) {
Set<Integer> set = new HashSet<>();
for (int i = 0; i < nums.length; i++) {
if (!set.add(nums[i])) { // add成功返回true,如果set中已有相同数字,则add方法会返回false
set.remove(nums[i]); // 删除重复出现的数字
}
}
return set.iterator().next(); }
方法三(求差法):
思路:先对数组排序,显而易见的,单独出现一次的数据必然是出现在数组下标为偶数的位置(下标从0开始),那么所有奇数下标的元素之和减去偶数下标的元素之和,就是需要求得的结果。
代码如下:
public static int singleNumber(int[] nums) {
int num = 0;
Arrays.sort(nums);
for (int i = 0; i < nums.length; i++) {
// 偶数下标位置 num += nums[i],奇数下标位置 num -= nums[i]
num = i % 2 == 0 ? num + nums[i] : num - nums[i];
}
return num;
}
方法四(异或法):
思路:根据异或运算的特点,相同的数字经过异或运算后结果为0,除单独出现一次的数字外,其他数字都是出现两次的,那么这些数字经过异或运算后结果一定是0。而任何数字与0进行异或运算都是该数字本身。所以对数组所有元素进行异或运算,运算结果就是题目的答案。
上代码:
public static int singleNumber(int[] nums) {
int num = 0;
for (int i = 0; i < nums.length; i++) {
num = num ^ nums[i];
}
return num;
}
总结:
其实严格来讲,只有第四种方式是题目想要的解法,其他三种方法都是有瑕疵的。
方法一、方法三都用到了Arrays.sort(int[] a)的方法,我们先来看JDK提供的数组排序方法:
public static void sort(int[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
}
调用了DualPivotQuicksort类的静态方法:
/**
* Sorts the specified range of the array using the given
* workspace array slice if possible for merging
*
* @param a the array to be sorted
* @param left the index of the first element, inclusive, to be sorted
* @param right the index of the last element, inclusive, to be sorted
* @param work a workspace array (slice)
* @param workBase origin of usable space in work array
* @param workLen usable size of work array
*/
static void sort(int[] a, int left, int right,
int[] work, int workBase, int workLen) {
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
} /*
* Index run[i] is the start of i-th run
* (ascending or descending sequence).
*/
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left; // Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else { // equal
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
} /*
* The array is not highly structured,
* use Quicksort instead of merge sort.
*/
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
} // Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
return;
} // Determine alternation base for merge
byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1); // Use or create temporary array b for merging
int[] b; // temp array; alternates with a
int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new int[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
} else {
b = work;
ao = 0;
bo = workBase - left;
} // Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
} else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
int o = ao; ao = bo; bo = o;
}
}
代码较长,想看的同学点开看一下,可以发现这个方法的时间复杂度是O(n3),不符合题目的要求线性时间复杂度。
方法二呢,是利用了HashSet集合不可重复的特性,同样我们来看HashSet的add方法:
/**
* Adds the specified element to this set if it is not already present.
* More formally, adds the specified element <tt>e</tt> to this set if
* this set contains no element <tt>e2</tt> such that
* <tt>(e==null ? e2==null : e.equals(e2))</tt>.
* If this set already contains the element, the call leaves the set
* unchanged and returns <tt>false</tt>.
*
* @param e element to be added to this set
* @return <tt>true</tt> if this set did not already contain the specified
* element
*/
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
其实HashSet的底层是通过HashMap来实现的,HashSet中的元素都是HashMap中的key,再来看HashMap的put方法:
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} /**
* Implements Map.put and related methods
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
请注意:上面 putVal 方法中,调用的 resize() 、 putTreeVal() 等方法本身也是O(n2)的时间复杂度。不符合题目要求的线性时间复杂度。
所以严格来说,只有第四种方式符合题目要求,但我们拓宽思路,能多用几种还算不错的方式实现需求,也是有百利而无一害的,大家也不必非要钻这个牛角尖。
另外,从效率上来讲,第四种效率是最高的,经过测试高出前三种方式1-2个数量级。只是在普通的业务代码中,用到异或运算的地方并不多,不太容易想到这种方式,这个就考验大家的基础功底了。
只出现一次的数字 [ LeetCode ]的更多相关文章
- 136.只出现一次的数字 leetcode ^运算符 JavaScript解法
leetcode上的一道题简单题 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. 你可以不使用额外空间 ...
- Leetcode 137. 只出现一次的数字 II - 题解
Leetcode 137. 只出现一次的数字 II - 题解 137. Single Number II 在线提交: https://leetcode.com/problems/single-numb ...
- 【LeetCode题解】136_只出现一次的数字
目录 [LeetCode题解]136_只出现一次的数字 描述 方法一:列表操作 思路 Java 实现 Python 实现 方法二:哈希表 思路 Java 实现 Python 实现 方法三:数学运算 思 ...
- LeetCode 260. Single Number III(只出现一次的数字 III)
LeetCode 260. Single Number III(只出现一次的数字 III)
- LeetCode 137. Single Number II(只出现一次的数字 II)
LeetCode 137. Single Number II(只出现一次的数字 II)
- LeetCode 136. Single Number(只出现一次的数字)
LeetCode 136. Single Number(只出现一次的数字)
- 【Leetcode】【简单】【136. 只出现一次的数字】【JavaScript】
题目描述 136. 只出现一次的数字 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. 你可以不使用额外 ...
- LeetCode初级算法--数组01:只出现一次的数字
LeetCode初级算法--数组01:只出现一次的数字 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn. ...
- LeetCode:137. 只出现一次的数字 II
LeetCode:137. 只出现一次的数字 II 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现了三次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. ...
随机推荐
- 4.openldap创建索引
1.索引的意义 提高对Openldap目录树的查询速度 提高性能 减轻对服务器的压力 2.搜索索引 ldapsearch -Q -LLL -Y EXTERNAL -H ldapi:/// -b cn= ...
- [C++] Solve "Cannot run program "gdb": Unknown reason" error
In Mac OSX, The Issue Image: 1. Build the project on Eclipse successfully. 2. Run gdb on command lin ...
- ES6的新特性(4)——字符串的扩展
字符串的扩展 ES6 加强了对 Unicode 的支持,并且扩展了字符串对象. 字符的 Unicode 表示法 JavaScript 允许采用\uxxxx形式表示一个字在\u0000~\uFFFF之间 ...
- 深度系统(deepin)与win10双系统切换设置
之前在win10下安装了深度系统,我不知道其他人在双系统切换的时候是否需要更改BIOS参数,我根据我的实际情况给出双系统切换设置的解决方案. 1.开机后进入选项System setup 2.按照下图选 ...
- Thunder团队第七周 - Scrum会议6
Scrum会议6 小组名称:Thunder 项目名称:i阅app Scrum Master:苗威 工作照片: 宋雨在照相,所以不在相片中. 参会成员: 王航:http://www.cnblogs.co ...
- KNY团队与“易校”小程序介绍
一.团队介绍 “KNY”团队是软件工程专业中的一支充满了斗志,充满了自信的队伍,由三人组成,每个队员都在为我们共同一致的目标而努力:我们三个人的小程序的知识都相对薄弱,但我们不甘落后,一直在努力的学习 ...
- 前端获取URL和SESSON中的值
.CS中代码 public ActionResult Index(string viewname, bool partial = false) { //获取URL中的 foreach (var key ...
- 【IdentityServer4文档】- 使用客户端凭据保护 API
使用客户端凭据保护 API quickstart 介绍了使用 IdentityServer 保护 API 的最基本场景. 接下来的场景,我们将定义一个 API 和一个想要访问它的客户端. 客户端将在 ...
- 做更好的自己 ——读《我是IT小小鸟》有感
转眼间大一已经过了一大半了,到了大学,才发现初高中时父母所说的“到了大学你就轻松了···”都是骗人的.但我脑海里却一直被这个观点所支配,以至于我在大一上学期里无所事事,不知道干些什么.学习也没重视,分 ...
- 用putty玩linux的时候由于以前用window 习惯写完东西按一下ctrl+s 保存
问题描述:用putty玩linux的时候由于以前用window 习惯写完东西按一下ctrl+s 保存,但是在putty一按下就不能再输入了.后来查找到:ctrl+s 是putty的一个命令大概是这样子 ...