那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的。

求$(i,j)=prime$对数

\begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d|(i,j)}{\mu(d)}\newline&=&\sum_{p=2}^{min(n,m)}\sum_{d}^{\lfloor\frac{min(n,m)}{p}\rfloor}{\mu(d)}\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor\end{eqnarray*}

枚举质数的倍数,预处理好,最后底数优化一下。

/** @Date    : 2017-09-09 00:24:45
* @FileName: bzoj 2820 莫比乌斯反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e7+20;
const double eps = 1e-8; int pri[N];
int mu[N];
LL sum[N];
int c = 0;
bool vis[N]; void mobius()
{
MMF(vis);
MMF(mu);
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
mu[i * pri[j]] = 0;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
for(int i = 0; i < c; i++) //预处理 mu[dp/p]
for(int j = 1; j * pri[i] < N; j++)
sum[j * pri[i]] += mu[j];
for(int i = 1; i < N; i++)
sum[i] += sum[i - 1];
} int main()
{
mobius();
int T;
cin >> T;
while(T--)
{
LL n, m;
scanf("%lld%lld", &n, &m);
LL ans = 0;
LL mi = min(n, m);
LL last;
for(int i = 1; i <= mi; i = last + 1)
{
last = min(n/(n/i), m/(m/i));
ans += (n / i) * (m / i) * (sum[last] - sum[i - 1]);
}
printf("%lld\n", ans);
}
return 0;
}

bzoj 2820 / SPOJ PGCD 莫比乌斯反演的更多相关文章

  1. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  2. BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...

  3. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  4. 【BZOJ】2693: jzptab 莫比乌斯反演

    [题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...

  5. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  6. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  7. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  8. BZOJ 2301 Problem b (莫比乌斯反演+容斥)

    这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...

  9. Bzoj 2190 仪仗队(莫比乌斯反演)

    题面 bzoj 洛谷 题解 看这个题先大力猜一波结论 #include <cstdio> #include <cstring> #include <algorithm&g ...

随机推荐

  1. 【Alpha】阶段第五次Scrum Meeting

    [Alpha]阶段第五次Scrum Meeting 工作情况 团队成员 今日已完成任务 明日待完成任务 刘峻辰 增加课程接口 增加教师接口 赵智源 整合前端进行部署 构建后端测试点测试框架 肖萌威 编 ...

  2. 软工1816 · Alpha冲刺(8/10)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员1(组长):王彬 过去两天完成了哪些任务 推进前后端各个接口的整合 学习jQuery基本语法,为beta阶段的商铺页面做准备 接下 ...

  3. HDU 5191 Building Blocks

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5191 bc(中文):http://bestcoder.hdu.edu.cn/contests ...

  4. 有关rand(),srand()产生随机数学习总结

    看到夏雪冬日的有关rand()和srand()产生随机数的总结,挺好的,学习了,然后又有百度其他人的成果,系统总结一下.本文转自夏雪冬日:http://www.cnblogs.com/heyongga ...

  5. 在Wmware虚拟机上如何检查是否CPU支持虚拟化 和 加载kvm模块

    在vm虚拟机中 修改 虚拟机==>设置==> 处理器==>虚拟化引擎(选第二项:虚拟化Intel VT-x/EPT 或 AMD-V/RVI(V) )     # vmx或svm :表 ...

  6. 蜗牛慢慢爬 LeetCode 1.Two Sum [Difficulty: Easy]

    题目 Given an array of integers, return indices of the two numbers such that they add up to a specific ...

  7. Scrum冲刺博客汇总

    第一篇 Scrum冲刺博客 http://www.cnblogs.com/LZTZ/p/8886296.html 第二篇 Scrum冲刺博客 http://www.cnblogs.com/LZTZ/p ...

  8. 【前端学习笔记01】JavaScript源生判断数据类型的方法

    原始类型(值类型):Undefined.Null.Number.String.Boolean: 对象类型(引用类型):Object: typeof  可以识别标准类型,null外(返回Object): ...

  9. HDU4767_Sum Of Gcd

    通过一个题目,学到了很多. 题意为给你n个数,每次询问i,j,答案为i,j间任取两数所有的取法gcd的和. 假设我们当前要看看这个区间有多少个数的gcd为x,最最原始的想法都是查询这个区间有多少个数为 ...

  10. 【bzoj3730】震波 动态点分治+线段树

    题目描述 在一片土地上有N个城市,通过N-1条无向边互相连接,形成一棵树的结构,相邻两个城市的距离为1,其中第i个城市的价值为value[i].不幸的是,这片土地常常发生地震,并且随着时代的发展,城市 ...