Spark RDD中的aggregate函数
转载自:http://blog.csdn.net/qingyang0320/article/details/51603243
针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考。
首先,Spark文档中aggregate函数定义如下
def aggregate[U](zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)(implicit arg0: ClassTag[U]): U
Aggregate the elements of each partition, and then the results for all the partitions, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are allowed to modify and return their first argument instead of creating a new U to avoid memory allocation. seqOp操作会聚合各分区中的元素,然后combOp操作把所有分区的聚合结果再次聚合,两个操作的初始值都是zeroValue. seqOp的操作是遍历分区中的所有元素(T),第一个T跟zeroValue做操作,结果再作为与第二个T做操作的zeroValue,直到遍历完整个分区。combOp操作是把各分区聚合的结果,再聚合。aggregate函数返回一个跟RDD不同类型的值。因此,需要一个操作seqOp来把分区中的元素T合并成一个U,另外一个操作combOp把所有U聚合。
- zeroValue
-
the initial value for the accumulated result of each partition for the
seqOp
operator, and also the initial value for the combine results from different partitions for thecombOp
operator - this will typically be the neutral element (e.g.Nil
for list concatenation or0
for summation) - seqOp
-
an operator used to accumulate results within a partition
- combOp
-
an associative operator used to combine results from different partitions
举个例子。假如List(1,2,3,4,5,6,7,8,9,10),对List求平均数,使用aggregate可以这样操作。
C:\Windows\System32>scala
Welcome to Scala 2.11.8 (Java HotSpot(TM) Client VM, Java 1.8.0_91).
Type in expressions for evaluation. Or try :help.
scala> val rdd = List(1,2,3,4,5,6,7,8,9)
rdd: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> rdd.par.aggregate((0,0))(
(acc,number) => (acc._1 + number, acc._2 + 1),
(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)
)
res0: (Int, Int) = (45,9)
scala> res0._1 / res0._2
res1: Int = 5
过程大概这样:
首先,初始值是(0,0),这个值在后面2步会用到。
然后,(acc,number) => (acc._1 + number, acc._2 + 1),number即是函数定义中的T,这里即是List中的元素。所以acc._1 + number, acc._2 + 1的过程如下。
1. 0+1, 0+1
2. 1+2, 1+1
3. 3+3, 2+1
4. 6+4, 3+1
5. 10+5, 4+1
6. 15+6, 5+1
7. 21+7, 6+1
8. 28+8, 7+1
9. 36+9, 8+1
结果即是(45,9)。这里演示的是单线程计算过程,实际Spark执行中是分布式计算,可能会把List分成多个分区,假如3个,p1(1,2,3,4),p2(5,6,7,8),p3(9),经过计算各分区的的结果(10,4),(26,4),(9,1),这样,执行(par1,par2) => (par1._1 + par2._1, par1._2 + par2._2)就是(10+26+9,4+4+1)即(45,9).再求平均值就简单了
Spark RDD中的aggregate函数的更多相关文章
- 理解Spark RDD中的aggregate函数(转)
针对Spark的RDD,API中有一个aggregate函数,本人理解起来费了很大劲,明白之后,mark一下,供以后参考. 首先,Spark文档中aggregate函数定义如下 def aggrega ...
- Spark Streaming中的操作函数讲解
Spark Streaming中的操作函数讲解 根据根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transform ...
- spark RDD transformation与action函数整理
1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...
- Spark Streaming中的操作函数分析
根据Spark官方文档中的描述,在Spark Streaming应用中,一个DStream对象可以调用多种操作,主要分为以下几类 Transformations Window Operations J ...
- Spark RDD中Runtime流程解析
一.Runtime架构图 (1)从Spark Runtime的角度讲,包括五大核心对象:Master.Worker.Executor.Driver.CoarseGrainedExecutorBack ...
- spark RDD编程,scala版本
1.RDD介绍: RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...
- Spark RDD API详解(一) Map和Reduce
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...
- Spark RDD Operations(1)
以上是对应的RDD的各中操作,相对于MaoReduce只有map.reduce两种操作,Spark针对RDD的操作则比较多 ************************************** ...
- Spark RDD操作(1)
https://www.zybuluo.com/jewes/note/35032 RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RD ...
随机推荐
- 5月5号周二课堂练习:简评cnblogs.com的用户体验
一.用户类型 在博客园上写博客,提问题,浏览感兴趣的博客帖子的活跃用户. 二.对cnblogs的期望 在博客园上写博客更流畅,制作手机版的APP可以随时随地在线浏览大牛们写的博客,提出的问题能更好的更 ...
- 在html中怎么格式化输出json字符串
#今天的项目用到,看俊哥找到,特此记录下来 步骤: 1.在html页面中输入下面的标签,必须是在pre标签内输出格式才会生效: <pre id="songReqJson"&g ...
- 第一次c++作业(感觉不是很好系列)
日常先贴github的地址 https://github.com/egoistor/Elevator-scheduling 然后我觉得学习了半天,构造函数似懂非懂(用的是class自动生成的构造函数, ...
- CodeForces 154A Hometask dp
题目链接: http://codeforces.com/problemset/problem/154/A 题意: 给你一个字符串,和若干模板串(长度为2),至少删除多少个字母,使得字符串的字串里面没有 ...
- JSON.parse与eval
文章:JSON.parse 与 eval() 对于解析json的问题 json的标准格式:{"name":"jobs"} 名字和值都必须用双引号引起来.
- 关于解决乱码问题的一点探索之二(涉及Unicode(utf-16)和GBK)
在上篇日志中(链接),我们讨论了utf-8编码和GBK编码之间转化的乱码问题,这一篇我们讨论Unicode(utf-16编码方式)与GBK编码之间转换的乱码问题. 在Windows系统 ...
- ORACLE公司传奇历史
ORACLE公司传奇 ORACLE公司之起源 很难想象,ORACLE 公司的这一段传奇居然要从 IBM 公司开始. 1970年的6月,IBM 公司的研究员埃德加·考特 (Edgar Frank Cod ...
- Nodejs学习笔记(一)--- 操作Mysql数据库
对于一门语言的学习,我个人觉得最好的方式就是通过一个项目来展示,所以从基本的一些模块去了解是最好的方式对于Mysql怎么去链接数据库这个我是在网上找到的(其实一直想找官方文档的,发现没有它的踪迹,(后 ...
- 操作系统之实验二Step1-有序顺序表
实验二Step1-有序顺序表 专业:商业软件工程 班级:商软2班 姓名:甘佳萍 学号:201406114207 实验要求:初始化 输入数组元素个数. 输入n个数,排序输出. 存 ...
- IBM存储降级告警等一些服务器问题/dd/ethtool
1.IBM存储降级告警 一般两种情况 a.端口降级 例如模块16G->8G(IBM储存端口自适应) b.系统在作raid后,有硬盘损坏,降级 黄灯告警 2. dimm error dimm内存插 ...