「LibreOJ β Round #4」求和
https://loj.ac/problem/528
1 , d =1
μ(d)= (-1)^k , d=p1*p2*p3*^pk pi为素数
0 , d=除以上的其他数
所以题意转化:有多少对数的gcd相同质因子只有1个
考虑容斥原理
令f(x)表示 有多少对数的gcd含有x^2这个因子
可能有一对数的gcd含有多个x^2
那么答案最终呈现 tot-f(x1)+f(x2)- f(x3)+ f(x4)……的形式
容斥系数为miu(x)
所以ans=miu(1)*f(1)+miu(2)*f(2)+miu(3)*f(3)……
f怎么算?
每隔x^2个数中一定有一个能整除x^2
所以f(x)= n/x^2 * m/x^2
#include<cmath>
#include<cstdio>
#include<iostream>
#define N 3200001
#define mod 998244353
using namespace std;
typedef long long LL;
bool vis[N];
int p[N],miu[N],cnt;
void pre()
{
miu[]=;
for(int i=;i<N;i++)
{
if(!vis[i])
{
p[++cnt]=i;
miu[i]=-;
}
for(int j=;j<=cnt;j++)
{
if(i*p[j]>=N) break;
vis[i*p[j]]=true;
if(i%p[j]==) break;
miu[i*p[j]]=-miu[i];
}
}
}
void read(LL &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
}
int main()
{
pre();
LL n,m;
read(n); read(m);
int maxn=min(sqrt(n),sqrt(m));
int ans=;
for(int i=;i<=maxn;i++) ans=(ans+miu[i]*(n/(1ll*i*i)%mod)*(m/(1ll*i*i)%mod)%mod+mod)%mod;
printf("%d",ans);
}
「LibreOJ β Round #4」求和的更多相关文章
- LibreOJ #528. 「LibreOJ β Round #4」求和
二次联通门 : LibreOJ #528. 「LibreOJ β Round #4」求和 /* LibreOJ #528. 「LibreOJ β Round #4」求和 题目要求的是有多少对数满足他们 ...
- LOJ528 「LibreOJ β Round #4」求和
LOJ528 「LibreOJ β Round #4」求和 先按照最常规的思路推一波: \[\begin{aligned} &\sum_{i=1}^n\sum_{j=1}^m\mu^2(\gc ...
- Loj #528. 「LibreOJ β Round #4」求和 (莫比乌斯反演)
题目链接:https://loj.ac/problem/528 题目:给定两个正整数N,M,你需要计算ΣΣu(gcd(i,j))^2 mod 998244353 ,其中i属于[1,N],j属于[1,M ...
- loj#528. 「LibreOJ β Round #4」求和
求:\(\sum_{i=1}^n\sum_{j=1}^m\mu(gcd(i,j))^2\) 化简可得\(\sum_{i=1}^{min(n,m)}{\lfloor \frac{n}{i} \rfloo ...
- loj #547. 「LibreOJ β Round #7」匹配字符串
#547. 「LibreOJ β Round #7」匹配字符串 题目描述 对于一个 01 串(即由字符 0 和 1 组成的字符串)sss,我们称 sss 合法,当且仅当串 sss 的任意一个长度为 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
随机推荐
- LeetCode 48. Rotate Image (C++)
题目: You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwis ...
- 【技术向】rainmeter的设计与发现
我们在大学期间所学的那点代码知识还远远不够,于是我就自己寻找到了一款简单易懂的软件,来丰富我的代码知识. 这款软件叫rainmeter,中文叫做雨滴,是一款可以修改桌面的软件.它可以将桌面上更改出硬盘 ...
- IDEA + SSH OA 第一天(Hibernate : Mapping (RESOURCE) not found)
切入主题,看看今天的错误是如何发生的: 首先这是我的项目路径,java 是 Sources Root , resources 是 Resources Root ,放了所需要的配置文件,其中 Hiber ...
- LAMP环境搭建Wordpress个人博客
LAMP简要介绍 L:LinuxA:Apache(httpd)M:MySQL , MariadbP:php, perl , python 静态资源:图片,文档,视频,HTML代码,CSS代码,js代码 ...
- (二)MySQL中级篇
1.视图view 视图是一个虚拟表,其内容由查询定义.定义视图的筛选可以来自当前或其它数据库的一个或多个表,或者其它视图. 视图的优点: ①简化了操作,把经常使用的数据定义为视图. ②安全性,用户只能 ...
- (五)Jmeter中的属性和变量
一.Jmeter中的属性: 1.JMeter属性统一定义在jmeter.properties文件中,我们可以在该文件中添加自定义的属性 2.JMeter属性在测试脚本的任何地方都是可见的(全局),通常 ...
- selenium Object Page 设计模式理解及实现!
Page Object模式是Selenium中的一种测试设计模式,主要是将每一个页面设计为一个Class,其中包含页面中需要测试的元素(按钮,输入框,标题 等),这样在Selenium测试页面中可以通 ...
- (转)Elasticsearch search-guard 插件部署
我之前写了ELK+shield的部署文档,由于shield是商业收费的,很多人都推崇开源项目search-guard来做ELK的安全组件,准确来说是elasticsearch的安全组件.search- ...
- 新浪 ip 地址库
API地址:http://int.dpool.sina.com.cn/iplookup/iplookup.php 帮助 1 2 3 4 5 6 7 8 function get_location($i ...
- session的基本原理
转载:http://blog.sina.com.cn/s/blog_8155e74d0101iqmh.html 如何严格限制session在30分钟后过期! 1.设置客户端cookie的lifetim ...