一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案。写一个程序来找出将原始图案依照下面列转换方法转换成新图案的最小方式:

1:转90度:图案按顺时针转90度。

2:转180度:图案按顺时针转180度。

3:转270度:图案按顺时针转270度。

4:反射:图案在水平方向翻转(以中央铅垂线为中心形成原图案的镜像)。

5:组合:图案在水平方向翻转,然后再依照1到3之间的一种再次转换。

6:不改变:原图案不改变。

7:无效转换:无法用以上方法得到新图案。

假设有多种可用的转换方法,请选择序号最小的那个。

仅仅使用1--7中的一个步骤来完毕这次转换。

[编辑]格式

PROGRAM NAME: transform

INPUT FORMAT:

(file transform.in)

第一行: 单独的一个整数N。

第二行到第N+1行: N行每行N个字符(不是“@”就是“-”)。这是转换前的正方形。

第N+2行到第2*N+1行: N行每行N个字符(不是“@”就是“-”);这是转换后的正方形。

OUTPUT FORMAT:

(file transform.out)

单独的一行包含1到7之间的一个数字(在上文已描写叙述)表明须要将转换前的正方形变为转换后的正方形的转换方法。

[编辑]SAMPLE INPUT

3
@-@
---
@@-
@-@
@--
--@

[编辑]SAMPLE OUTPUT

1
/*
ID: zwcwu52
PROG: transform
LANG: C++
*/ #include <iostream>
#include <fstream>
#include <string> using namespace std; char blkSrc[10][10], blkDst[10][10]; //源方阵、目标方阵 int main()
{
ofstream fout ("transform.out");
ifstream fin ("transform.in"); unsigned N; //阶数
unsigned num = 7; //方案数字 fin >> N; //读取源方阵
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{fin >> blkSrc[i][j];}
} //读取目标方阵
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{fin >> blkDst[i][j];}
} do
{
bool b = true; //b 标识是否全然符合 //按方案1检測
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[j][N - i - 1])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 1;
break;
} //按方案2检測
b = true;
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[N- i - 1][N - j - 1])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 2;
break;
} //按方案3检測
b = true;
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[N- j - 1][i])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 3;
break;
} //按方案4检測
b = true;
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[i][N - j - 1])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 4;
break;
} //按方案5检測
b = true;
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[N - j - 1][N - i - 1])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 5;
break;
} //按方案5检測
b = true;
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[N - i - 1][j])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 5;
break;
} //按方案5检測
b = true;
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[j][i])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 5;
break;
} //按方案6检測
b = true;
for(unsigned i = 0; i < N; i++)
{ for(unsigned j = 0; j < N; j++)
{
if(blkSrc[i][j] != blkDst[i][j])
{
b = false;
break;
}
}
}
if(true == b)
{
num = 6;
break;
} }while(0); fout << num << endl; return 0;
}

【USACO1.2_2】★Transformations 方块转换的更多相关文章

  1. Transformations 方块转换 USACO 模拟 数组 数学 耐心

    1006: 1.2.2 Transformations 方块转换 时间限制: 1 Sec  内存限制: 128 MB提交: 10  解决: 7[提交] [状态] [讨论版] [命题人:外部导入] 题目 ...

  2. [USACO1.2.2]方块转换 Transformations

    P1205 [USACO1.2]方块转换 Transformations 标签 搜索/枚举 USACO 题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方 ...

  3. Transformations 方块转换

    题目是中文题,就不做什么解释了,纯模拟题,主要要搞清楚这几种装换方式下标的变化: 第一种:顺时针旋转90度: c[j][n-i+1]=a[i][j]; 第二种:旋转180度: c[n-i+1][n-j ...

  4. USACO 1.2.2 Transformations 方块转换

    Description 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度 ...

  5. 洛谷 Transformations 方块转换

    Description 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度 ...

  6. 洛谷 P1205 [USACO1.2]方块转换 Transformations

    P1205 [USACO1.2]方块转换 Transformations 题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始 ...

  7. Spark Streaming之六:Transformations 普通的转换操作

    与RDD类似,DStream也提供了自己的一系列操作方法,这些操作可以分成四类: Transformations 普通的转换操作 Window Operations 窗口转换操作 Join Opera ...

  8. USACO Training Section 1.2 [USACO1.2]方块转换 Transformations

    题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度:图案按顺时针 ...

  9. 【USACO 1.2.2】方块转换

    [问题描述] 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式: 1:转90度:图案按顺 ...

随机推荐

  1. JS模块化规范CMD之SeaJS

    1. 在接触规范之前,我们用模块化来封装代码大多为如下: ;(function (形参模块名, 依赖项, 依赖项) { // 通过 形参模块名 修改模块 window.模块名 = 形参模块名 })(w ...

  2. Web前端开发最佳实践(2):前端代码重构

    前言 代码重构是业内经常讨论的一个热门话题,重构指的是在不改变代码外部行为的情况下进行源代码修改,所以重构之前需要考虑的是重构后如何才能保证外部行为不改变.对于后端代码来说,可以通过大量的自动化测试来 ...

  3. js 表

    setInterval("body.innerHTML=new Date().toLocaleString()+' 星期'+'日一二三四五六'.charAt(new Date().getDa ...

  4. d2i_xxx出错

    在生成DER编码是X509_ALGOR类型没有赋值导致,要先new,然后赋值. req_st->req.appKeyReq->appKeyType = X509_ALGOR_new(); ...

  5. karma配置文件参数介绍

    目录结构 参数介绍 /*** * Created by laixiangran on 2015/12/22. * karma单元测试配置文件 */ module.exports = function( ...

  6. Docker下使用daocloud镜像加速(基于Centos6)

    Docker加速器使用时不需要任何额外操作.就像这样下载官方Ubuntu镜像 实际操作(添加镜像源):在 /etc/sysconfig/docker下添加两条命令 other_args="- ...

  7. Python学习之argparse

    http://www.2cto.com/kf/201412/363654.html https://docs.python.org/3.4/howto/argparse.html# 一.简介: arg ...

  8. debug id

    id是Eclipse的debugger自己生成的,用于告诉你哪些变量是指向同一个对象:id相同即指向同一个对象. primitive不是对象,所以就没有id. 但是如果你用primitive的wrap ...

  9. 使用matplotlib绘图(四)之散点图

    # 使用matplotlib绘制散点图 import numpy as np import matplotlib.pyplot as plt # 设置全局刻度标签大小 plt.rcParams['xt ...

  10. FFT(快速傅里叶变换)

    学习了FFT用来求多项式的乘法,看了算导上的介绍,上面讲的非常明白,概括一下FFT的原理就是,我们在计算多项式的乘法时,如果暴力模拟的话是n^2 复杂度的,就像小学学的竖式乘法一样,比如一个n位数乘上 ...