POJ 2112 Optimal Milking(最大流)
题目链接:http://poj.org/problem?id=2112
Description
locations are named by ID numbers K+1..K+C.
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
Source
题目描写叙述:(转)
k个机器,每一个机器最多服务m头牛。
c头牛,每一个牛须要1台机器来服务。
告诉你牛与机器每一个之间的直接距离。
问:让全部的牛都被服务的情况下,使走的最远的牛的距离最短,求这个距离。
解题报告:
二分枚举距离,实际距离满足当前枚举距离限制的能够增加这条边。
枚举的距离中符合条件的最小值就是答案。
建图过程:
一个超级原点,和每一个机器的容量都是m。
一个超级汇点,每头牛和汇点的容量都是1.
机器i与牛j之间的距离假设小于等于当前枚举值mid,连接i,j。容量1.
这样最大流的意义就是可以服务的牛最多是多少,假设最大流等于牛的总数c。表示当前枚举值mid符合条件,同一时候说明mid值还可能可以更小。更新二分右边界r = mid - 1.
假设小于牛的总数。说明mid偏小,更新二分左边界,l = mid + 1.
机器与牛之间的最短距离能够用floyd预处理出来。
代码例如以下:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 310;//点数的最大值
const int MAXM = 40010;//边数的最大值
const int INF = 0x3f3f3f3f;
struct Edge
{
int to,next,cap,flow;
} edge[MAXM]; //注意是MAXM
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],cur[MAXN];
int k, c, m;
int s, e;//源点,汇点
int map[MAXN][MAXN];
int mid;//二分中间值;
int num;//矩阵的规格;
//加边,单向图三个參数,双向图四个參数
void addedge(int u,int v,int w,int rw = 0)
{
edge[tol].to = v;
edge[tol].cap = w;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = rw;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
int Q[MAXN]; void BFS(int start,int end)
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0] = 1;
int front = 0, rear = 0;
dep[end] = 0;
Q[rear++] = end;
while(front != rear)
{
int u = Q[front++];
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(dep[v] != -1)continue;
Q[rear++] = v;
dep[v] = dep[u] + 1;
gap[dep[v]]++;
}
}
}
int S[MAXN];
//输入參数:起点、终点、点的总数
//点的编号没有影响,仅仅要输入点的总数
int sap(int start,int end,int N)
{
BFS(start,end);
memcpy(cur,head,sizeof(head));
int top = 0;
int u = start;
int ans = 0;
while(dep[start] < N)
{
if(u == end)
{
int Min = INF;
int inser;
for(int i = 0; i < top; i++)
if(Min > edge[S[i]].cap - edge[S[i]].flow)
{
Min = edge[S[i]].cap - edge[S[i]].flow;
inser = i;
}
for(int i = 0; i < top; i++)
{
edge[S[i]].flow += Min;
edge[S[i]^1].flow -= Min;
}
ans += Min;
top = inser;
u = edge[S[top]^1].to;
continue;
}
bool flag = false;
int v;
for(int i = cur[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
{
flag = true;
cur[u] = i;
break;
}
}
if(flag)
{
S[top++] = cur[u];
u = v;
continue;
}
int Min = N;
for(int i = head[u]; i != -1; i = edge[i].next)
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
gap[dep[u]]--;
if(!gap[dep[u]])return ans;
dep[u] = Min + 1;
gap[dep[u]]++;
if(u != start)u = edge[S[--top]^1].to;
}
return ans;
} void Foyld()//两个点的最短距离
{
for(int k = 1; k <= num; k++)
{
for(int i = 1; i <= num; i++)
{
for(int j = 1; j <= num; j++)
{
if(map[i][j] > map[i][k]+map[k][j])
{
map[i][j] = map[i][k]+map[k][j];
}
}
}
}
}
void init()
{
tol = 0;
memset(head,-1,sizeof(head));
for(int i = 1; i <= k; i++)//k个挤奶器
{
for(int j = k+1; j <= num; j++)//c头奶牛
{
if(map[i][j] <= mid)
{
//假设奶牛到挤奶器的最短距离<=mid,建权值为1的边
addedge(j,i,1);
}
}
}
for(int i = 1; i <= k; i++)
{
addedge(i,e,m);//每一个挤奶器最多能够挤k头牛
}
for(int i = k+1; i <= num; i++)
{
addedge(s,i,1);//建一条源点到奶牛的边。权值为1
}
}
int main()
{
while(~scanf("%d%d%d",&k,&c,&m))
{
num = k+c;
s = 0;//源点
e = num+1;//汇点
int nv = num+2; //结点总数
for(int i = 1; i <= num; i++)
{
for(int j = 1; j <= num; j++)
{
scanf("%d",&map[i][j]);
if(i!=j && !map[i][j])
{
map[i][j] = INF;
}
}
}
Foyld();
int l = 0, r = INF;
while(l <= r)
{
mid = (r+l)/2;
init();
if(sap(s, e, nv) == c)//最大流等于c
{
r = mid-1;
}
else
{
l = mid+1;
}
}
printf("%d\n",l);
}
return 0;
}
POJ 2112 Optimal Milking(最大流)的更多相关文章
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112 Optimal Milking (二分 + 最大流)
题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...
- POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Optimal Milking Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19456 Accepted: 6947 ...
- POJ 2112 Optimal Milking(二分+最大流)
http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...
- POJ - 2112 Optimal Milking (dijkstra + 二分 + 最大流Dinic)
(点击此处查看原题) 题目分析 题意:在一个农场中有k台挤奶器和c只奶牛,每个挤奶器最多只能为m只奶牛挤奶,每个挤奶器和奶牛都视为一个点,将编号1~k记为挤奶器的位置,编号k+1~k+c记为奶牛的位置 ...
随机推荐
- 1.7(SQL学习笔记)游标
一.游标简介 SELECT语句得到的是一个结果集,有时我们需要对结果集中的单条数据进行处理. 这时就需要使用游标,游标定义时和一个SELECT语句的结果集关联在一起. 游标执行这个结果集,可以在结果集 ...
- mvc 从客户端 中检测到有潜在危险的 Request.Form 值
天往MVC中加入了一个富文本编辑框,在提交信息的时候报了如下的错误:从客户端(Content="<EM ><STRONG ><U >这是测试这...&qu ...
- Unity Pivot/Center与Local/Global总结
Untiy左上角有两个按钮 Pivot/Center 和 Local/Global 它们叫做 变换Gizmo工具 Pivot/Center:现实游戏对象的轴心参考点.Center为以所有选中物体所 ...
- TPS61175/TPS55340 3A/5A、40V 电流模式集成 FET 升压 DC/DC 转换器
集成型5A 40V 宽输入范围升压/单端初级电感转换器(SEPIC) / 反激式(Flyback) 直流到直流稳压器 (Rev. B) 描述 TPS55340 是一款单片非同步开关稳压器,此稳压器带有 ...
- Visual Studio删除所有的注释和空行
visual studio用"查找替换"来删掉源代码中所有//方式的纯注释和空行 注意:包括/// <summary>这样的XML注释也都删掉了. 步骤1/2(删除注释 ...
- 使用Redisson实现分布式锁
原文:https://www.jianshu.com/p/cde0700f0128 1. 可重入锁(Reentrant Lock) Redisson的分布式可重入锁RLock Java对象实现了jav ...
- 淘宝API开发第一步
1.登录淘宝开放平台:http://open.taobao.com/ 2.添加网站 (验证完网站后,会提醒“JSSDK以激活提交审核按钮”,这个需要的UV达100,按钮才会亮,审核过程中也得保持UV的 ...
- jdbcTemplate:包含占位符的SQL无法打印参数信息
网上的解决方案是在log4j设置以下参数:(如:http://my.oschina.net/wamdy/blog/468491) log4j.logger.org.springframework.jd ...
- UML建模工具Visio 、Rational Rose、PowerDesign的比较
UML建模工具Visio .Rational Rose.PowerDesign的比较 ROSE是直接从UML发展而诞生的设计工具,它的出现就是为了对UML建模的支持,ROSE一开始没有对数据库端建 ...
- 3D打印
R=2.5的内径圆,需要R=2.2的圆柱才能吻合,否则插不进去.