Codeforces Round #361 (Div. 2) D - Friends and Subsequences
题目大意:给你两个长度为n的数组a, b,问你有多少个问你有多少个区间满足
a中最大值等于b中最小值。
思路:我本来的想法是用单调栈求出每个点的管辖区间,然后问题就变成了巨麻烦的线段覆盖问题,就爆炸写了
一晚上假算法。正解就是枚举一个端点,然后二分找右端点的区间,因为满足一个很神奇的单调性,然后st表维护
一下区间最值就好了。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 2e5 + ;
const int M = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ; int n, a[N], b[N], bin[], Log[N], mx[][N], mn[][N]; void calRmq() {
bin[] = ; Log[] = -;
for(int i = ; i < ; i++) bin[i] = bin[i - ] * ;
for(int i = ; i < N; i++) Log[i] = Log[i / ] + ; for(int i = ; i <= n; i++) mx[][i] = a[i];
for(int i = ; i <= n; i++) mn[][i] = b[i]; for(int i = ; i <= Log[n]; i++) {
for(int j = ; j <= n; j++) {
if(j + bin[i] - <= n) {
mn[i][j] = min(mn[i - ][j], mn[i - ][j + bin[i - ]]);
mx[i][j] = max(mx[i - ][j], mx[i - ][j + bin[i - ]]);
}
}
}
} int getVal(int x, int y, int op) {
int t = Log[y - x + ];
if(op) return max(mx[t][x], mx[t][y - bin[t] + ]);
return min(mn[t][x], mn[t][y - bin[t] + ]);
} int main(){
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
}
for(int i = ; i <= n; i++) {
scanf("%d", &b[i]);
} calRmq(); LL ans = ;
for(int i = ; i <= n; i++) {
int l = i, r = n, mid, ret1 = -, ret2 = -;
while(l <= r) {
mid = l + r >> ;
int valMin = getVal(i, mid, );
int valMx = getVal(i, mid, );
if(valMin > valMx) l = mid + ;
else if(valMin < valMx) r = mid - ;
else ret1 = mid, r = mid - ;
} l = i, r = n;
while(l <= r) {
mid = l + r >> ;
int valMin = getVal(i, mid, );
int valMx = getVal(i, mid, );
if(valMin > valMx) l = mid + ;
else if(valMin < valMx) r = mid - ;
else ret2 = mid, l = mid + ;
} if(ret1 != -) {
ans += ret2 - ret1 + ;
}
} printf("%lld\n", ans);
return ;
} /*
*/
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define pii pair<int, int> using namespace std; const int N = 1e5;
const int M = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 +; int mm[N];
struct ST
{
int dp[N][],ty;
void build(int n,int b[],int _ty)
{
ty=_ty;
for(int i=;i<=n;i++)
dp[i][]=ty*b[i];
for(int j=;j<=mm[n];j++)
for(int i=;i+(<<j)-<=n;i++)
dp[i][j]=max(dp[i][j-],dp[i+(<<(j-))][j-]);
}
int query(int x,int y)
{
int k=mm[y-x+];
return ty*max(dp[x][k],dp[y-(<<k)+][k]);
}
}rmq; int a[N];
int main() { for(int i=-(mm[]=-);i<N;i++)
mm[i]=mm[i-]+((i&(i-))==); int n; scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
}
rmq.build(n, a, ); while() {
int x, y; scanf("%d%d", &x, &y);
cout << rmq.query(x, y) << endl;
}
return ;
}
还有一个很神奇的st表
Codeforces Round #361 (Div. 2) D - Friends and Subsequences的更多相关文章
- Codeforces Round #361 (Div. 2) D. Friends and Subsequences 二分
D. Friends and Subsequences 题目连接: http://www.codeforces.com/contest/689/problem/D Description Mike a ...
- Codeforces Round #361 (Div. 2) C.NP-Hard Problem
题目连接:http://codeforces.com/contest/688/problem/C 题意:给你一些边,问你能否构成一个二分图 题解:二分图:二分图又称作二部图,是图论中的一种特殊模型. ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...
- Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分
C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...
- Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs
B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...
- Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题
A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...
- Codeforces Round #361 (Div. 2) D
D - Friends and Subsequences Description Mike and !Mike are old childhood rivals, they are opposite ...
- Codeforces Round #361 (Div. 2) C
C - Mike and Chocolate Thieves Description Bad news came to Mike's village, some thieves stole a bun ...
随机推荐
- 手脱FSG 2.0 -> bart/xt
声明: 只为纪录自己的脱壳历程,高手勿喷 1.在入口的第二行ESP定律下硬件断点然后F9运行8次(因为第9次就跑飞了) 0040955C > pushad 0040955D EB jmp //E ...
- Centos下 自动化配置SSH免密码登陆
hosts文件,存储要部署的节点IP地址,其中以#开头表示注释掉 192.168.101.52 192.168.101.53 192.168.101.54 192.168.101.55 192.168 ...
- Debian最完美安装flash的教程//适用于所有linux版本
话说不管是新手还是老手,都离不开flash.没有flash的支持,菜鸟们也少了一些把玩linux的动力. flash有很多安装的方法,不过性能相差很大.这里的缘由就不重要了. 下面我介绍在chromi ...
- 「LibreOJ β Round #4」框架
https://loj.ac/problem/527 题目描述 有一个n×m的矩形框架,但其中有些边被删除了.qmqmqm想知道剩余部分中还有多少完整的正方形.只有当一个正方形的每一条边均被保留下来, ...
- 部署维护docker环境
其实前面已经用salt,安装部署了docker应用环境了,过程中还是遇到了不少问题,所以这里再相对仔细的记录一下,docker手机安装过程应注意的事情 安装过程部分参考了刘天斯大师文档部署 1,安装环 ...
- 【BZOJ】1087: [SCOI2005]互不侵犯King
[算法]状态压缩型DP [题解]http://www.cnblogs.com/xtx1999/p/4620227.html (orz) https://www.cnblogs.com/zbtrs/p/ ...
- 数据库-SQLite
技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http://weibo.com/luohanchenyilong 数据库-SQLite 技术博客http:// ...
- Spring Boot工程结构推荐
工程结构(最佳实践) Spring Boot框架本身并没有对工程结构有特别的要求,但是按照最佳实践的工程结构可以帮助我们减少可能会遇见的坑,尤其是Spring包扫描机制的存在,如果您使用最佳实践的工程 ...
- 基于canvas实现的fontawesome动态图标
由于还没有全部实现,实现了一些demo,demo地址在 https://github.com/jiangzhenfei/canvas-fontawesome 实现了动态loading 实现动态电池充电 ...
- python初步学习-python函数(一)
python 函数 函数是组织好的,可重复使用的,用来实现单一或者相关联功能的代码段. 函数能提高应用的模块性和代码的重复利用率. 函数定义 python中函数定义有一些简单的规则: 函数代码块以de ...