关联容器和顺序容器的本质差别在于:关联容器通过键(key)存储和读取元素,顺序容器则通过元素在容器中的位置顺序存储和访问元素

关联容器类型

map

关联数组:元素通过键来存储和读取

set

大小可变的集合,支持通过键实现的快速读取

multimap

支持同一个键多次出现的 map 类型

multiset

支持同一个键多次出现的 set 类型

pair类型

pair是一种模版类型,在创建pair对象,必须提供两个类型名。

头文件 utility

pairs 类型提供的操作

pair<T1, T2> p1;

创建一个空的 pair 对象,它的两个元素分别是T1 和 T2 类型,采用值初始化

pair<T1, T2> p1(v1, v2);

创建一个 pair 对象,它的两个元素分别是 T1 和 T2 ,其中 first 成员初始化为 v1,而 second 成员初始化为 v2

make_pair(v1, v2)

以 v1 和 v2 值创建一个新 pair 对象,其元素类型分别是 v1 和 v2 的类型

p1 < p2

两个 pair 对象之间的小于运算,其定义遵循字典次序:如果 p1.first < p2.first 或者 !(p2.first < p1.first) && p1.second < p2.second,则返回
true

p1 == p2

如果两个 pair 对象的 first 和 second 成员依次相等,则这两个对象相等。该运算使用其元素的 == 操作符

p.first

返回 p 中名为 first 的(公有)数据成员

p.second

返回 p 的名为 second 的(公有)数据成员

pair对象的创建(三种方法:直接初始化,.firs .second ,make_pair)

10.2

  1. #include <iostream>
  2. using namespace std;
  3. #include <utility>
  4. #include <vector>
  5.  
  6. int main()
  7. {
  8. vector< pair<string,int> > vec;
  9. string str;
  10. int n;
  11. cout<<"Enter a string and an integer(Ctrl +Z to end)"<<endl;
  12. while(cin>>str>>n)
  13. {
  14. pair<string,int> pr1(str,n);//直接创建pair对象
  15. vec.push_back(pr1);
  16.  
  17. pair<string,int> pr2;//使用make_pair创建pair对象
  18. pr2 = make_pair(str,n);
  19. vec.push_back(pr2);
  20.  
  21. pair<string,int> pr3;//用成员first,second创建pair对象
  22. pr3.first = str;
  23. pr3.second = n;
  24. vec.push_back(pr3);
  25. }
  26.  
  27. vector< pair<string,int> >::iterator ite = vec.begin();
  28. while(ite != vec.end())
  29. {
  30. cout<<(*ite).first<<" "<<(*ite).second<<endl;
  31. ite++;
  32. }
  33.  
  34. return ;
  35. }

map类型

定义map对象时,必须分别指明键和值的类型

map 对象的定义

map<k, v> m;

创建一个名为 m 的空 map 对象,其键和值的类型分别为 k 和 v

map<k, v> m(m2);

创建 m2 的副本 mm 与 m2 必须有相同的键类型和值类型

map<k, v> m(b, e);

创建 map 类型的对象 m,存储迭代器 b 和 e 标记的范围内所有元素的副本。元素的类型必须能转换为 pair<const k, v>

在使用关联容器时,它的键不但有一个类型,而且还有一个相关的比较函数。 所用的比较函数必须在键类型上定义严格弱排序。所谓的严格弱排序可理解为键类型数据上的“小于”关系。对于键类型,唯一的约束就是必须支持 < 操作符

map 类定义的类型

map<K, V>::key_type

在 map 容器中,用做索引的键的类型

map<K, V>::mapped_type

在 map 容器中,键所关联的值的类型

map<K, V>::value_type

一个 pair 类型,它的 first 元素具有 const map<K, V>::key_type 类型,而 second 元素则为 map<K, V>::mapped_type 类型

map的键值是不能修改的,必须先删除再添加

map迭代器返回value_type类型的值——包含const key_type和mapped_type类型的值

使用下标访问map对象

访问不存在的元素将导致在map容器中添加一个新元素,它的键即为该下标值

map下标操作符返回mapped_type,map迭代器返回pair类型

添加新元素可以利用下标行为的特点:

10.9 编写程序统计并输入所读入单词出现的次数

  1. #include <iostream>
  2. using namespace std;
  3. #include <map>
  4. #include <string>
  5.  
  6. int main()
  7. {
  8. map<string,int> word_count;
  9. string str;
  10. cout<<"Enter some words(Ctrl + Z to end:)"<<endl;
  11. while(cin>>str)
  12. ++word_count[str];
  13. map<string,int>::iterator ite = word_count.begin();
  14. while(ite != word_count.end())
  15. {
  16. cout<<(*ite).first<<"\t"<<(*ite).second<<endl;
  17. ite++;
  18. }
  19.  
  20. return ;
  21. }

map::insert

容器提供的 insert 操作

m.insert(e)

e 是一个用在 m 上的 value_type 类型的值。如果键(e.first)不在 m 中,则插入一个值为 e.second 的新元素;如果该键在 m 中已存在,则保持 m 不变。该函数返回一个 pair 类型对象,包含指向键为 e.first 的元素的 map 迭代器,以及一个 bool 类型的对象,表示是否插入了该元素

m.insert(beg,end)

beg 和 end 是标记元素范围的迭代器,其中的元素必须为 m.value_type 类型的键-值对。对于该范围内的所有元素,如果它的键在 m 中不存在,则将该键及其关联的值插入到 m。返回void 类型

m.insert(iter, e)

e 是一个用在 m 上的 value_type 类型的值。如果键(e.first)不在 m 中,则创建新元素,并以迭代器 iter 为起点搜索新元素存储的位置。返回一个迭代器,指向 m 中具有给定键的元素

比如:

word_count.insert(map<string,int>value_type("a",1))

传递给 insert 的实参相当笨拙。可用两种方法简化:使用 make_pair:

word_count.insert(make_pair("Anna", 1));

或使用 typedef

typedef map<string,int>::value_type valType;
word_count.insert(valType("Anna", 1));

insert返回类型是pair对象,包含一个迭代器和一个bool。如果键已在容器中,bool返回false;不在返回true。这两种情况下迭代器都指向具有给定键的元素

也就是说insert的参数和返回值都是pair类型,返回值pair.second是bool类型

  1. #include <iostream>
  2. using namespace std;
  3. #include <map>
  4. #include <string>
  5. #include <utility>
  6.  
  7. int main()
  8. {
  9. map<string,int> word_count;
  10. string str;
  11. cout<<"Enter some words(Ctrl + Z to end:)"<<endl;
  12. while(cin>>str)
  13. {
  14. pair< map<string,int>::iterator,bool > ret =
  15. word_count.insert(make_pair(str,));
  16. if( !ret.second )
  17. ++ret.first->second; //如果插入元素存在,.second加一
  18. }
  19.  
  20. map<string,int>::iterator ite = word_count.begin();
  21. while(ite != word_count.end())
  22. {
  23. cout<<(*ite).first<<"\t"<<(*ite).second<<endl;
  24. ite++;
  25. }
  26.  
  27. return ;
  28. }

以上用下标和用insert方法就是map插入元素的两种方法

查找并读取map中的元素

不修改 map 对象的查询操作

m.count(k)

返回 m 中 k 的出现次数

m.find(k)

如果 m 容器中存在按 k索引的元素,则返回指向该元素的迭代器。如果不存在,则返回超出末端迭代器

注意这里对m.count(k)返回值的理解,对map,返回值只有0或者1,k出现的次数是对multimap容器

用两种方法返回.second

  1. int count;
  2. if(word_count.count('a'))
  3. count = word_count("a")
  4. map<string,int>::iterator ite = word_count.find("a");
  5. if(ite != word.count.end())
  6. count = ite->second

注意:对于用迭代器表示map中的元素可以用(*ite).frist,等价于用ite->first,遍历的两种表示

从 map 对象中删除元素

m.erase(k)

删除 m 中键为 k 的元素。返回 size_type 类型的值,表示删除的元素个数

m.erase(p)

从 m 中删除迭代器 p 所指向的元素。p 必须指向 m 中确实存在的元素,而且不能等于 m.end()。返回 void

m.erase(b,e)

从 m 中删除一段范围内的元素,该范围由迭代器对 b 和 e 标记。b 和 e 必须标记 m 中的一段有效范围:即 b 和 e 都必须指向 m 中的元素或最后一个元素的下一个位置。而且,b 和 e 要么相等(此时删除的范围为空),要么 b 所指向的元素必须出现在 e 所指向的元素之前。返回 void 类型

 set

当只想知道一个值是否存在时,使用 set 容器是最适合的。

两种例外包括:set 不支持下标操作符,而且没有定义 mapped_type 类型。在 set 容器中,value_type 不是 pair 类型,而是与 key_type 相同的类型。它们指的都是 set 中存储的元素类型。这一差别也体现了 set 存储的元素仅仅是键,而没有所关联的值。与 map 一样,set 容器存储的键也必须唯一,而且不能修改。

插入

可使用 insert 操作在 set 中添加元素:

set<string> set1; // empty set
 
set1.insert("the"); // set1 now has one element

 
set1.insert("and"); // set1 now has two elements

另一种用法是,调用 insert 函数时,提供一对迭代器实参,插入其标记范围内所有的元素。该版本的 insert 函数类似于形参为一对迭代器的构造函数——对于一个键,仅插入一个元素:

set<int> iset2;  // empty set
iset2.insert(ivec.begin(), ivec.end()); // iset2 has 10 elements

与 map 容器的操作一样,带有一个键参数的 insert 版本返回 pair类型对象,包含一个迭代器和一个 bool 值,迭代器指向拥有该键的元素,而 bool 值表明是否添加了元素。使用迭代器对的insert 版本返回 void 类型。

正如不能修改 map 中元素的键部分一样,set 中的键也为 const

// set_it refers to the element with key == 1     
set<int>::iterator set_it = iset.find(1);     
*set_it = 11; // error: keys in a set are read-only
 
cout << *set_it << endl; // ok: can read the key

map 和 set 容器中,一个键只能对应一个实例。而 multiset 和 multimap 类型则允许一个键对应多个实例。 注意到,关联容器 map 和 set 的元素是按顺序存储的。而 multimap 和 multset 也一样。因此,在 multimap 和 multiset 容器中,如果某个键对应多个实例,则这些实例在容器中将相邻存放。 迭代遍历 multimap 或 multiset 容器时,可保证依次返回特定键所关联的所有元素。

小结

关联容器的元素按键排序和访问。关联容器支持通过键高效地查找和读取元素。键的使用,使关联容器区别于顺序容器,顺序容器的元素是根据位置访问的。

map 和 multimap 类型存储的元素是键-值对。它们使用在 utility 头文件中定义的标准库 pair 类,来表示这些键-值对元素。对 map 或 multimap 迭代器进行解引用将获得 pair类型的值。pair 对象的first 成员是一个 const 键,而 second 成员则是该键所关联的值。set 和 multiset 类型则专门用于存储键。在 map 和 set 类型中,一个键只能关联一个元素。而multimap 和 multiset 类型则允许多个元素拥有相同的键。

关联容器共享了顺序容器的许多操作。除此之外,关联容器还定义一些新操作,并对某些顺序容器同样提供的操作重新定义了其含义或返回类型,这些操作的差别体现了关联容器中键的使用。

关联容器的元素可用迭代器访问。标准库保证迭代器按照键的次序访问元素。begin操作将获得拥有最小键的元素,对此迭代器作自增运算则可以按非降序依次访问各个元素。

c++ primer 10 关联容器的更多相关文章

  1. C++ Primer 笔记——关联容器

    1.关联容器支持高效的关键字查找和访问,标准库提供8个关联容器. 2.如果一个类型定义了“行为正常”的 < 运算符,则它可以用作关键字类型. 3.为了使用自己定义的类型,在定义multiset时 ...

  2. C++ Primer 随笔 Chapter 10 关联容器

    1.关联容器的类型:map(键-值对的集合,可理解为关联数组), set(单纯的键的集合), multimap(一个键对应多个值,键唯一), multiset(相同键可以是多个). 2.pair类型提 ...

  3. C++ Primer 读书笔记:第10章 关联容器

    第10章 关联容器 引: map set multimap multiset 1.pair类型 pair<string, int> anon anon.first, anon.second ...

  4. C++ Primer : 第十一章 : 关联容器之概述、有序关联容器关键字要求和pair类型

    标准库定义了两种主要的关联容器:map和set map中的元素时一些关键字-值(key-value)对,关键字起到索引的作用,值则表示与索引相关的数据.set中每个元素只包含一个关键字,可以完成高效的 ...

  5. C++ Primer 5th 第11章 关联容器

    练习11.1:描述map 和 vector 的不同. map是关联容器,vector是顺序容器,关联容器与值无关,vector则与值密切相关 练习11.2:分别给出最适合使用 list.vector. ...

  6. C++ Primer笔记7_STL之关联容器

    关联容器 与顺序容器不同,关联容器的元素是按keyword来訪问和保存的.而顺序容器中的元素是按他们在容器中的位置来顺序保存的. 关联容器最常见的是map.set.multimap.multiset ...

  7. [C++ Primer] : 第11章: 关联容器

    目录 使用关联容器 关联容器概述 关联容器操作 无序容器 使用关联容器 关联容器与顺序容器有着根本的不同: 关联容器中的元素是按关键字来保存和访问的, 按顺序容器中的元素是按它们在容器中的位置来顺序保 ...

  8. C++ Primer 学习笔记_34_STL实践与分析(8) --引言、pair类型、关联容器

    STL实践与分析 --引言.pair类型.关联容器 引言:     关联容器与顺序容器的本质差别在于:关联容器通过键[key]来存储和读取元素,而顺序容器则通过元素在容器中的位置顺序的存取元素. ma ...

  9. 《C++ Primer》笔记 第11章 关联容器

    关联容器类型 解释 按关键字有序保存元素 -- map 关联数组:保存关键字-值对 set 关键字即值,即只保存关键字的容器 multimap 关键字可重复出现的map multiset 关键字可重复 ...

随机推荐

  1. PID控制算法的C语言实现五 积分分离的PID控制算法C语言实现

    在普通PID控制中,引入积分环节的目的主要是为了消除静差,提高控制精度.但在过程的启动.结束或大幅度增减设定时,短时间内系统输出有很大的偏差,会造成PID运算的积分积累,致使控制量超过执行机构可能允许 ...

  2. PID控制算法的C语言实现一 PID算法原理

    本系列是转载............. 全部的程序有一个共同点:就是我没认真去调pid的参数 在工业应用中PID及其衍生算法是应用最广泛的算法之一,是当之无愧的万能算法,如果能够熟练掌握PID算法的设 ...

  3. 基于epoll封装的事件回调miniserver

    epoll技术前两节已经阐述过了,目前主要做一下封装,很多epoll的服务器都是采用事件回调方式处理, 其实并没有什么复杂的,我慢慢给大家阐述下原理. 在networking.h和networking ...

  4. protobuf手册

    1. c++快速上手 https://developers.google.com/protocol-buffers/docs/cpptutorial 2. c++使用手册 https://develo ...

  5. \G,sql中select 如果太长,可以在后面放\G,竖行显示~~~~

    1.使用\G按行垂直显示结果 如果一行很长,需要这行显示的话,看起结果来就非常的难受. 在SQL语句或者命令后使用\G而不是分号结尾,可以将每一行的值垂直输出. mysql> select * ...

  6. CF540 C BFS 水

    '.'->'X' 前者走后变成后者,后者除了是终点不能再走.初始位置是X很傻的以为这样从初始点走出去后初始位置就变成不能走了,实际上是还能走一次的. 其他就是BFS,路上记得把路变成X就好了 太 ...

  7. python_继承.ziw

    2017年1月2日, 星期一 python_继承   null

  8. 【CodeForces】901 C. Bipartite Segments

    [题目]C. Bipartite Segments [题意]给定n个点m条边的无向连通图,保证不存在偶数长度的简单环.每次询问区间[l,r]中包含多少子区间[x,y]满足只保留[x,y]之间的点和边构 ...

  9. python并发编程之asyncio协程(三)

    协程实现了在单线程下的并发,每个协程共享线程的几乎所有的资源,除了协程自己私有的上下文栈:协程的切换属于程序级别的切换,对于操作系统来说是无感知的,因此切换速度更快.开销更小.效率更高,在有多IO操作 ...

  10. xv6/bootasm.S + xv6/bootmain.c

    xv6/bootasm.S #include "asm.h" #include "memlayout.h" #include "mmu.h" ...