题目

洛谷等许多 \(OJ\) 都有

思路

考试题,今日无意又做了一次

然后发现自己读错题了······

其实询问时只要 \(k\) 轮排序后的逆序对个数并不需要真的对序列进行更改

很显然 \(k\) 轮操作后每一个位置产生逆序对个数比 \(k\) 小的都没了,比 \(k\) 大的都减了 \(k\)

那么我们只要求每一个位置产生逆序对个数比 \(k\) 大的所有的和减去他们的个数乘 \(k\) 就好了

所以只要对交换时的两个数进行分类讨论,分别算下他们交换后对逆序对个数的影响就行了

开树状数组维护,一个记贡献的和,一个记个数(权值为下标)

\(Code\)

#include<cstdio>
#include<iostream>
#include<cstring>
#define LL long long
using namespace std; const int N = 2e5 + 5;
int n , m , p[N] , num[N]; struct BIT{
LL c[N];
int lowbit(int x){return x & (-x);}
void add(int x , int v){for(; x <= n; x += lowbit(x)) c[x] += v;}
LL query(int x)
{
LL res = 0;
for(; x; x -= lowbit(x)) res += c[x];
return res;
}
}a , b; int main()
{
scanf("%d%d" , &n , &m);
for(register int i = 1; i <= n; i++)
{
scanf("%d" , &p[i]);
num[i] = a.query(n) - a.query(p[i]);
a.add(p[i] , 1);
}
memset(a.c , 0 , sizeof a.c);
for(register int i = 1; i <= n; i++)
if (num[i] != 0) a.add(num[i] , num[i]) , b.add(num[i] , 1);
int t , k;
for(; m; m--)
{
scanf("%d%d" , &t , &k);
if (t == 1)
{
if (p[k] > p[k + 1])
{
if (num[k + 1] != 0) a.add(num[k + 1] , -num[k + 1]) , b.add(num[k + 1] , -1) , num[k + 1]--;
if (num[k + 1] != 0) a.add(num[k + 1] , num[k + 1]) , b.add(num[k + 1] , 1);
}
else{
if (num[k] != 0) a.add(num[k] , -num[k]) , b.add(num[k] , -1);
num[k]++ , a.add(num[k] , num[k]) , b.add(num[k] , 1);
}
swap(p[k] , p[k + 1]) , swap(num[k] , num[k + 1]);
}
else {
if (k >= n)
{
printf("0\n");
continue;
}
printf("%lld\n" , a.query(n) - a.query(k) - (b.query(n) - b.query(k)) * k);
}
}
}

[NOI Online 提高组]冒泡排序的更多相关文章

  1. NOI Online 提高组 题解

    来补坑了-- 个人认为三道题难度差不多-- 还有要说一嘴,为啥我在其他网站代码都好好的,复制到 cnblogs 上 Tab 就成 8 空格了?不过也懒得改了. T1 序列 首先,遇到这种加一减一还带附 ...

  2. NOI ONLINE 提高组 序列 根据性质建图

    题目链接 https://www.luogu.com.cn/problem/P6185 题意 应该不难懂,跳过 分析 说实话第一眼看到这题的时候我有点懵,真不知道怎么做,不过一看数据,还好还好,暴力能 ...

  3. luogu P6570 [NOI Online #3 提高组]优秀子序列 二进制 dp

    LINK:P6570 [NOI Online #3 提高组]优秀子序列 Online 2的T3 容易很多 不过出于某种原因(时间不太够 浪了 导致我连暴力的正解都没写. 容易想到 f[i][j]表示前 ...

  4. [NOI Online 2021 提高组] 积木小赛

    思路不说了. 想起来自己打比赛的时候,没睡好.随便写了个\(HASH\),模数开小一半分都没有. 然后学了\(SAM\),发现这个判重不就是个水题. \(SAM\)是字串tire的集合体. 随便\(d ...

  5. NOIP2018提高组初赛准备

    NOIP2017提高组初赛错题 一.单项选择题(共15 题,每题1.5 分,共计22.5 分:每题有且仅有一个正确选项) 4. 2017年10月1日是星期日,1949年10月1日是( ). A. 星期 ...

  6. NOIP2018提高组初赛知识点

     (传说,在神秘的初赛中,选手们经常互相爆零以示友好……) 历年真题:ti.luogu.com.cn 以下标题中打*的是我认为的重点内容 一.关于计算机 (一)计算机组成 硬件组成: 1. 控制器(C ...

  7. NOIP2018初赛总结(提高组)(试题+答案+简要解析)

    NOIP2018初赛总结(提高组) 更新完毕(纯手敲),如果有错误请在下面留言 单选题 T1.下列四个不同进制的数中,与其它三项数值上不相等的是 A.\((269)_{16}\) B.\((617)_ ...

  8. noip2017爆炸记——题解&总结&反省(普及组+提高组)

    相关链接: noip2018总结 noip2017是我见过的有史以来最坑爹的一场考试了. 今年北京市考点有一个是我们学校,我还恰好被分到了自己学校(还是自己天天上课的那个教室),于是我同时报了普及提高 ...

  9. 【题解】NOIP2016提高组 复赛

    [题解]NOIP2016提高组 复赛 传送门: 玩具谜题 \(\text{[P1563]}\) 天天爱跑步 \(\text{[P1600]}\) 换教室 \(\text{[P1850]}\) 组合数问 ...

  10. JZOJ8月15日提高组反思——2020年暑假终结篇

    JZOJ8月15日提高组反思--2020年暑假终结篇 T1 仙人掌最短路 抱歉我只会最短路 仙人掌是啥? 听说是缩点+\(LCA\) 最短路30 T2 直接暴力计算 正解\(DP\) \(amazin ...

随机推荐

  1. 小米mini路由器刷breed不死鸟和潘多拉固件

    前言 开启小米路由器ssh, 这一步浪费我很长时间,因为目前的开发版都对ssh升级进行了md5校验,导致官方升级方法总是失败,所以换成老版本的 路由器固件就行了. 步骤 下载 0.4.36 mini路 ...

  2. 关于在linux上vm virtualbox读取不到U盘问题的解决

    1.设置usb2.0模式 如果你没安装拓展插件的话,调成usb2.0就会出现无效的配置这个提示,并且启动虚拟机会报 Implementation of the USB 2.0 controller n ...

  3. 【Shell脚本案例】案例1:服务器系统配置初始化

    〇.目录 一.背景 新购买10台服务器,并安装Linux系统 目的:对操作系统进行配置的初始化 二.需求 1.设置时区并同步时间 2.禁用selinux安全机制 3.关闭防火墙(清空防火墙的默认策略, ...

  4. java 如何正确使用接口返回对象Result

    1. Result的使用 Result的使用,是java项目中开发接口的必备,它经常被我们用作接口的返回对象,方便前端或者其他程序的远程调用后处理业务.它一般包括以下几个属性: code:一般根据系统 ...

  5. layui table 表头抖动

    原本table超出页面宽度(即table有横向滚动条)的情况下,缩放页面然后再设置定时器定时更新表单,会发现数据不变的时候table头部会左右抖动 而且th td比设置的minWidth 或者cell ...

  6. SQLMap入门——获取字段内容

    查询完字段名称之后,获取该字段的具体数据信息 python sqlmap.py -u http://localhost/sqli-labs-master/Less-1/?id=1 -D mysql - ...

  7. Spring IOC官方文档学习笔记(三)之依赖项

    1.依赖注入 (1) 依赖注入(DI)的概念:某个bean的依赖项,由容器来负责注入维护,而非我们自己手动去维护,以此来达到bean之间解耦的目的,如下 //情况一:不使用依赖注入 public cl ...

  8. 网络编程 UDP套接字

    第十二章 UDP套接字 12.1 前言 上一章讲述了TCP通信方式,它是基于流的面向连接的网络通信.UDP是IP协议上的另一种传输协议. TCP和UDP都是端到端的通信协议,都处于TCP/IP网络模型 ...

  9. STL vector常用API

    1.容器:序列容器(时间决定).关联式容器(容器中的数据有一定规则) 2.迭代器:通过迭代器寻找.遍历容器中的数据 vetor的使用:数据遍历与输出 #define _CRT_SECURE_NO_WA ...

  10. conan环境安装

    环境 安装conan 使用conan 搜索包 导入包 编译 打包项目 准备源码 编译成conan包 环境 ubuntu:bionic的docker image docker run -it ubunt ...