MySQL 慢查询优化案例
一、慢查询优化基本步骤
【1】先运行看看是否真的很慢,注意设置SQL_NO_CACHE(查询时不使用缓存);
【2】where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的 where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高;
【3】explain查看执行计划,是否与2预期一致(从锁定记录较少的表开始查询);
【4】order by limit 形式的 sql语句让排序的表优先查;
【5】了解业务方使用场景;
【6】加索引时参照建索引的几大原则;
【7】观察结果,不符合预期继续从1分析;
二、几个慢查询案例
下面几个例子详细解释了如何分析和优化慢查询
1、复杂语句写法
很多情况下,我们写 SQL只是为了实现功能,这只是第一步,不同的语句书写方式对于效率往往有本质的差别,这要求我们对 mysql的执行计划和索引原则有非常清楚的认识,请看下面的语句:
1 select
2 distinct cert.emp_id
3 from
4 cm_log cl
5 inner join
6 (
7 select
8 emp.id as emp_id,
9 emp_cert.id as cert_id
10 from
11 employee emp
12 left join
13 emp_certificate emp_cert
14 on emp.id = emp_cert.emp_id
15 where
16 emp.is_deleted=0
17 ) cert
18 on (
19 cl.ref_table='Employee'
20 and cl.ref_oid= cert.emp_id
21 )
22 or (
23 cl.ref_table='EmpCertificate'
24 and cl.ref_oid= cert.cert_id
25 )
26 where
27 cl.last_upd_date >='2013-11-07 15:03:00'
28 and cl.last_upd_date<='2013-11-08 16:00:00';
【1】先运行一下,53条记录 1.87秒,又没有用聚合语句,比较慢
53 rows in set (1.87 sec)
【2】explain
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
| 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary |
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer |
| 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where |
| 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index |
+----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+
简述一下执行计划,首先 mysql根据 idx_last_upd_date索引扫描 cm_log表获得379条记录;然后查表扫描了63727条记录,分为两部分,derived[衍生的]表示构造表,也就是不存在的表,可以简单理解成是一个语句形成的结果集,后面的数字表示语句的ID。derived2表示的是ID = 2的查询构造了虚拟表,并且返回了 63727条记录。我们再来看看ID = 2的语句究竟做了写什么返回了这么大量的数据,首先全表扫描 employee表 13317条记录,然后根据索引 emp_certificate_empid关联 emp_certificate表,rows = 1表示,每个关联都只锁定了一条记录,效率比较高。获得后,再和 cm_log的 379条记录根据规则关联。从执行过程上可以看出返回了太多的数据,返回的数据绝大部分 cm_log都用不到,因为 cm_log只锁定了379条记录。
如何优化呢?可以看到我们在运行完后还是要和 cm_log做 join,那么我们能不能运行之前和 cm_log做 join呢?仔细分析语句不难发现,其基本思想是如果 cm_log的 ref_table是 EmpCertificate就关联 emp_certificate表,如果ref_table是 Employee就关联 employee表,我们完全可以拆成两部分,并用 union连接起来,注意这里用union,而不用 union all是因为原语句有“distinct”来得到唯一的记录,而 union恰好具备了这种功能。如果原语句中没有 distinct不需要去重,我们就可以直接使用 union all了,因为使用union需要去重的动作,会影响SQL性能。
优化过的语句如下:
1 select
2 emp.id
3 from
4 cm_log cl
5 inner join
6 employee emp
7 on cl.ref_table = 'Employee'
8 and cl.ref_oid = emp.id
9 where
10 cl.last_upd_date >='2013-11-07 15:03:00'
11 and cl.last_upd_date<='2013-11-08 16:00:00'
12 and emp.is_deleted = 0
13 union
14 select
15 emp.id
16 from
17 cm_log cl
18 inner join
19 emp_certificate ec
20 on cl.ref_table = 'EmpCertificate'
21 and cl.ref_oid = ec.id
22 inner join
23 employee emp
24 on emp.id = ec.emp_id
25 where
26 cl.last_upd_date >='2013-11-07 15:03:00'
27 and cl.last_upd_date<='2013-11-08 16:00:00'
28 and emp.is_deleted = 0
【3】不需要了解业务场景,只需要改造的语句和改造之前的语句保持结果一致;
【4】现有索引可以满足,不需要建索引;
【5】用改造后的语句实验一下,只需要10ms 降低了近200倍!
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where |
| 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where |
| 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where |
| 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | |
| 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where |
| NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
53 rows in set (0.01 sec)
2、明确应用场景
举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的。
1 select
2 *
3 from
4 stage_poi sp
5 where
6 sp.accurate_result=1
7 and (
8 sp.sync_status=0
9 or sp.sync_status=2
10 or sp.sync_status=4
11 );
【1】先看看运行多长时间,951条数据6.22秒,真的很慢。
951 rows in set (6.22 sec)
【2】先explain,rows达到了361万,type = ALL表明是全表扫描。
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
| 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
【3】所有字段都应用查询返回记录数,因为是单表查询 1已经做过了951条。
【4】让 explain的 rows 尽量逼近951。
【5】看一下 accurate_result = 1的记录数:
select count(*),accurate_result from stage_poi group by accurate_result;
+----------+-----------------+
| count(*) | accurate_result |
+----------+-----------------+
| 1023 | -1 |
| 2114655 | 0 |
| 972815 | 1 |
+----------+-----------------+
【6】我们看到 accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据。
【7】再看一下 sync_status字段的情况:
select count(*),sync_status from stage_poi group by sync_status;
+----------+-------------+
| count(*) | sync_status |
+----------+-------------+
| 3080 | 0 |
| 3085413 | 3 |
+----------+-------------+
【8】同样的区分度也很低,根据理论,也不适合建立索引。
【9】问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当 sync_status 0、3分布的很平均,那么锁定记录也是百万级别的。
【10】找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把 sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个 SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据。
【11】根据建立索引规则,使用如下语句建立索引
alter table stage_poi add index idx_acc_status(accurate_result,sync_status);
【12】观察预期结果,发现只需要200ms,快了30多倍。
952 rows in set (0.20 sec)
我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把 where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们调查 SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。
3、无法优化的语句
1 select
2 c.id,
3 c.name,
4 c.position,
5 c.sex,
6 c.phone,
7 c.office_phone,
8 c.feature_info,
9 c.birthday,
10 c.creator_id,
11 c.is_keyperson,
12 c.giveup_reason,
13 c.status,
14 c.data_source,
15 from_unixtime(c.created_time) as created_time,
16 from_unixtime(c.last_modified) as last_modified,
17 c.last_modified_user_id
18 from
19 contact c
20 inner join
21 contact_branch cb
22 on c.id = cb.contact_id
23 inner join
24 branch_user bu
25 on cb.branch_id = bu.branch_id
26 and bu.status in (
27 1,
28 2)
29 inner join
30 org_emp_info oei
31 on oei.data_id = bu.user_id
32 and oei.node_left >= 2875
33 and oei.node_right <= 10802
34 and oei.org_category = - 1
35 order by
36 c.created_time desc limit 0 ,
37 10;
先看语句运行多长时间,10条记录用了13秒,已经不可忍受。
10 rows in set (13.06 sec)
执行 explain
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
| 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index |
| 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | |
| 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
从执行计划上看,mysql先查 org_emp_info表扫描 8849记录,再用索引 idx_userid_status关联 branch_user表,再用索引 idx_branch_id关联 contact_branch表,最后主键关联 contact表。rows返回的都非常少,看不到有什么异常情况。我们在看一下语句,发现后面有 order by + limit组合,会不会是排序量太大搞的?于是我们简化SQL,去掉后面的 order by 和 limit,看看到底用了多少记录来排序。
1 select
2 count(*)
3 from
4 contact c
5 inner join
6 contact_branch cb
7 on c.id = cb.contact_id
8 inner join
9 branch_user bu
10 on cb.branch_id = bu.branch_id
11 and bu.status in (
12 1,
13 2)
14 inner join
15 org_emp_info oei
16 on oei.data_id = bu.user_id
17 and oei.node_left >= 2875
18 and oei.node_right <= 10802
19 and oei.org_category = - 1
20 +----------+
21 | count(*) |
22 +----------+
23 | 778878 |
24 +----------+
25 1 row in set (5.19 sec)
发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据 contact的 created_time排序,再来 join会不会比较快呢?于是改造成下面的语句,也可以用 straight_join来优化:
select
c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
where
exists (
select
1
from
contact_branch cb
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 10802
and oei.org_category = - 1
where
c.id = cb.contact_id
)
order by
c.created_time desc limit 0 ,
10;
验证一下效果 预计在1ms内,提升了13000多倍!
10 rows in set (0.00 sec)
本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再 join和先 join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去 join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层 join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!用不同参数的 SQL试验下:
select
sql_no_cache c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
where
exists (
select
1
from
contact_branch cb
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 2875
and oei.org_category = - 1
where
c.id = cb.contact_id
)
order by
c.created_time desc limit 0 ,
10;
Empty set (2 min 18.99 sec)
2 min 18.99 sec!比之前的情况还糟糕很多。由于 mysql的 nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。
通过这个例子我们可以看到,并不是所有语句都能优化,而往往我们优化时,由于 SQL用例回归时落掉一些极端情况,会造成比原来还严重的后果。所以,第一:不要指望所有语句都能通过SQL优化,第二:不要过于自信,只针对具体 case来优化,而忽略了更复杂的情况。
慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表 join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过 varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。
任何数据库层面的优化都抵不上应用系统的优化,同样是MySQL,可以用来支撑Google/FaceBook/Taobao应用,但可能连你的个人网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!”
MySQL 慢查询优化案例的更多相关文章
- MySQL 子查询优化案例
开发人员给了一个sql ,结构如下delete from B where ID in (select NID from H where guid='xxx'); 内部sql满足条件的结果集只有一条,但 ...
- MySQL查询原理及其慢查询优化案例分享(转)
MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓“好马配好鞍”,如何能够更 好的使用它,已经成为开发工程师的必修课,我们经常会从职 ...
- MySQL慢查询优化
MySQL数据库是常见的两个瓶颈是CPU和I/O的瓶颈,CPU在饱和的时候一般发生在大量数据进行比对或聚合时.磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在网络上,那么查询量相当大的 ...
- 查询优化 | MySQL慢查询优化
Explain查询:rows,定位性能瓶颈. 只需要一行数据时,使用LIMIT1. 在搜索字段上建立索引. 使用ENUM而非VARCHAR. 选择区分度高的列作为索引. 采用扩展索引,而不是新建索引 ...
- php mysql 一个查询优化的简单例子
PHP+Mysql是一个最经常使用的黄金搭档,它们俩配合使用,能够发挥出最佳性能,当然,如果配合Apache使用,就更加Perfect了. 因此,需要做好对mysql的查询优化.下面通过一个简单的例子 ...
- WebAPI调用笔记 ASP.NET CORE 学习之自定义异常处理 MySQL数据库查询优化建议 .NET操作XML文件之泛型集合的序列化与反序列化 Asp.Net Core 轻松学-多线程之Task快速上手 Asp.Net Core 轻松学-多线程之Task(补充)
WebAPI调用笔记 前言 即时通信项目中初次调用OA接口遇到了一些问题,因为本人从业后几乎一直做CS端项目,一个简单的WebAPI调用居然浪费了不少时间,特此记录. 接口描述 首先说明一下,基于 ...
- MySQL in查询优化
https://blog.csdn.net/gua___gua/article/details/47401621 MySQL in查询优化<一> 原创 2015年08月10日 17:57: ...
- MySQL 慢查询优化
为什么查询速度会慢 1.慢是指一个查询的响应时间长.一个查询的过程: 客户端发送一条查询给服务器 服务器端先检查查询缓存,如果命中了缓存,则立可返回存储在缓存中的结果.否则进入下一个阶段 服务器端进行 ...
- MySQL SQL查询优化技巧详解
MySQL SQL查询优化技巧详解 本文总结了30个mysql千万级大数据SQL查询优化技巧,特别适合大数据里的MYSQL使用. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 ...
- 关于mysql的查询优化
由于工作原因,最近甲方客户那边多次反应了他们那边的系统查询速度慢,经过排除之后,发现他们那边的数据库完全没有用到索引,简直坑得一笔,通过慢查询日志分析,为数据表建立了适当的索引之后,查询速度明显的提高 ...
随机推荐
- Spring学习记事本
原因:原因:Application的启动类不能放在默认的java目录,必须放在建有包的目录下.
- 高级纹理以及复杂而真实的应用——ShaderCp10
--20.9.7 这章主要分成三个部分 立方体纹理(cubemap) 渲染纹理(RenderTexture,rt) 和程序纹理 一.立方体纹理 立方体纹理顾名思义是一种三维的纹理形状类似于立方体,由六 ...
- python机器学习——决策树算法
背景与原理: 决策树算法是在各种已知情况发生概率的基础上通过构成决策树来求某一事件发生概率的算法,由于这个过程画成图解之后很像一棵树形结构,因此我们把这个算法称为决策树. 而在机器学习中,决策树是一种 ...
- GAN的两种训练方式,以及梯度求导问题——detch(),retain_graph
http://t.zoukankan.com/LXP-Never-p-13951578.html detach():截断node反向传播的梯度流,将某个node变成不需要梯度的Varibale,因此当 ...
- C# DataTable.Select()根据条件筛选数据
1.前言: 很多时候我们获取到一个表的时候需要根据表的包含的队列去筛选内容,一般来说可能想到的就是遍历整个表的内容进行条件筛选,但是这种方式增加了代码量且易出错,DataTable.Select()就 ...
- Compose Modifier Clip 圆角
Row( modifier = Modifier .fillMaxWidth() .padding(20.dp) // 圆角 .clip(RoundedCornerShape(15.dp)) .cli ...
- 使用python-docx提取word中的表格
提取表格 import docx from docx import Document #导入库 path = '123.docx' #文件路径 document = Document(path) #读 ...
- midway 框架学习
最近 和别人一块运维 开源 产品,后台需要用到 midway框架,所以进行学习. 首先就是midway的搭建, 首先 npm init midway ,初始化项目,选择 koa-v3 template ...
- LeetCode 之 111. 二叉树的最小深度
原题链接 思路: 递归计算每个子树的深度,返回左右子树中深度小的值: 由于题目中要求的是到最近叶子节点的深度,所以需要判断 左右子树为空的情况: python/python3: class Solut ...
- 基于Nginx以及web服务器搭建在线视频播放
安装Nginx Nginx官网下载地址 网址打开后如图 下载windows版本的Nginx,这里下载最新的1.18.0版本 Nginx在windows下的安装只需要将其解压缩即可.建议将解压后的目录移 ...