Gauss 消元法
错乱瞎写
1. 线性方程组
省流:初等行变换化为一个上三角,然后瞬间出解
inline bool z(const double& x){return abs(x)<eps;}
int Gauss() // O(n^3)
{
int c, r;
for (c=1, r=1; c<=n; c++)
{
int m = r;
for (int i=r; i<=n; i++)
if (abs(a[i][c]) > abs(a[m][c])) m = i;
if (z(a[m][c])) continue;
for (int i=c; i<=n+1; i++) swap(a[m][i],a[r][i]);
for (int i=n+1; i>=c; i--) a[r][i] /= a[r][c];
for (int i=r+1; i<=n; i++)
if (!z(a[i][c]))
for (int j=n+1; j>=c; j--) a[i][j] -= a[r][j] * a[i][c];
r++;
}
for (int i=n; i>=0; i--) //回代
for (int j=i+1; j<=n; j++) a[i][n+1] -= a[i][j] * a[j][n+1];
if (r <= n)
{
for (int i=r; i<=n; i++)
if (!z(a[i][n+1])) return -1;
return 0;
} return 1;
}
2. 球形空间产生器sphere
\((r_1,r_2,\cdots,r_n)\)
\]
\]
\]
\]
3. 臭气弹
两种思路:
第一种:暴算
设一个到达 \(u\) 点的概率 \(dp_u\),由于全概率公式
\]
所以
\]
Gauss 消元解出来即可 .
特别的,点 \(1\) 还可以从天而降(概率为 \(1\)),所以 \(dp_1\gets dp_1+1\) .
于是答案是 \(\dfrac QP dp_u\) 或者下面那个带 \(\sum\) 的做法 = =
第二种:期望
令 \(dp_u\) 表示到达 \(u\) 点的期望次数,这里可以拆点(炸 / 不炸)也可以直接搞
\(dp\) 随便求(高斯消元解 dp),然后每个点的概率就是
\]
(eps 要开到 \(10^{-9}\),要不然精度不够)
4. 开关问题
也是两种思路:
第一种是列出一个同余 \(2\) 的线性方程组,然后发现初等行变换依然成立;
第二种是列出一个 xor 线性方程组,初等行变换全部改成 xor 消;
不管哪一种,最后找出自由元数量 \(r\),\(2^r\) 就是答案 .
Gauss 消元法的更多相关文章
- 【Java例题】4.3 3. 使用Gauss消元法求解n元一次方程组的根,
3. 使用Gauss消元法求解n元一次方程组的根,举例,三元一次方程组:0.729x1+0.81x2+0.9x3=0.6867x1+x2+x3=0.83381.331x1+1.21x2+1.1x3=1 ...
- [bzoj1770][Usaco2009 Nov]lights 燈——Gauss消元法
题意 给定一个无向图,初始状态所有点均为黑,如果更改一个点,那么它和与它相邻的点全部会被更改.一个点被更改当它的颜色与之前相反. 题解 第一道Gauss消元题.所谓gauss消元,就是使用初等行列式变 ...
- C# 列主元素(Gauss)消去法 计算一元多次方程组
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- C# 顺序高斯(Gauss)消去法计算一元多次方程组
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- Function Set in OPEN CASCADE
Function Set in OPEN CASCADE eryar@163.com Abstract. The common math algorithms library provides a C ...
- OpenCASCADE Interpolation - Lagrange
OpenCASCADE Interpolation - Lagrange eryar@163.com Abstract. Power basis polynomial is the most simp ...
- FORTRAN程序设计权威指南
<FORTRAN程序设计权威指南> 基本信息 作者: 白海波 出版社:机械工业出版社 ISBN:9787111421146 上架时间:2013-7-23 出版日期:2013 年7月 ...
- OpenCASCADE 3 Planes Intersection
OpenCASCADE 3 Planes Intersection eryar@163.com Abstract. OpenCASCADE provides the algorithm to sear ...
- Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元
给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...
随机推荐
- netty系列之:netty中常用的xml编码解码器
目录 简介 XmlFrameDecoder XmlDecoder 总结 简介 在json之前,xml是最常用的数据传输格式,虽然xml的冗余数据有点多,但是xml的结构简单清晰,至今仍然运用在程序中的 ...
- 905. Sort Array By Parity - LeetCode
Question 905. Sort Array By Parity Solution 题目大意:数组排序,偶数放前,奇数在后,偶数的数之间不用管顺序,奇数的数之间也不用管顺序 思路:建两个list, ...
- 146_ACCESS之HR招聘信息管理_64位
焦棚子的文章目录 点击下载附件 一.背景: 最近把之前做的一个HR招聘信息管理工具翻新了下,有需要的朋友可以自取,主要想解决的问题是多人在跟进人员招聘的时候信息的不对称,这样下来的就可以及时的看到整个 ...
- 129_Power Pivot&Power BI DAX不同维度动态展示&动态坐标轴
博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 一.背景 某天在和那还是叫我大铁吧 交流关于季度&月度同时展示的问题,感概中国式报表真的需求很微妙. 下面来看看到 ...
- 羿网通WT2100网络测试仪端口开关功能应用案例
端口开关是羿网通WT2100具备的一项全局性的功能,使用客户端软件Packlark连接WT2100后无需进入具体功能即可使用.该功能是通过控制设备上的以太网开关实现快速.便捷地切换网口通断状态的目标, ...
- WC2015 题解
K小割 题目链接:WC2015 K小割 Description 题目很清楚了,已经不能说的更简洁了-- Solution 这道题出题人挺毒的,你需要针对不同的部分分施用不同的做法 . 第\(1\)部分 ...
- Flask 之 高可用IP代理网站
高可用代理IP网站 目标:提供高可用代理IP 步骤一:通过爬虫获取代理IP 步骤二:对代理IP进行检测,判断代理是否可用 步骤三:将可用的代理IP写入mongodb数据库 步骤四:创建网站,从数据库获 ...
- Python工程:ImportError: attempted relative import with no known parent package
Python工程:ImportError: attempted relative import with no known parent package 解决方法: 1.对每个目录创建的时候都选择创建 ...
- Random方法中的nextInt(int arg0)方法讲解
nextInt方法会生成一个随机的在5以内的数,负载均衡随机策略底层用的就是这个方法: Random rand = new Random(); int index = rand.nextInt(5); ...
- 接口测试postman深度挖掘应用③--postman终结篇
上一章节我们介绍了postman的变量测试以及导入数据测试基本上技术性的东西已经差不过了,这篇文章再系统性的介绍一下. 一.下载 官网:https://www.postman.com 1.选择需要下载 ...