索引的相信大家都听说过,但是真正会用的又有几人?平时工作中写SQL真的会考虑到这条SQL如何能够用上索引,如何能够提升执行效率?

 前言

索引的相信大家都听说过,但是真正会用的又有几人?平时工作中写SQL真的会考虑到这条SQL如何能够用上索引,如何能够提升执行效率?

此篇文章详细的讲述了索引优化的几个原则,只要在工作中能够随时应用到,相信你写出的SQL一定是效率最高,最牛逼的。

文章的脑图如下:

索引优化规则

1、like语句的前导模糊查询不能使用索引

复制

select * from doc where title like '%XX';   --不能使用索引 
select * from doc where title like 'XX%';   --非前导模糊查询,可以使用索引 
  • 1.
  • 2.

因为页面搜索严禁左模糊或者全模糊,如果需要可以使用搜索引擎来解决。

2、union、in、or 都能够命中索引,建议使用 in

union能够命中索引,并且MySQL 耗费的 CPU 最少。

复制

select * from doc where status=1 
union all 
select * from doc where status=2; 
  • 1.
  • 2.
  • 3.

in能够命中索引,查询优化耗费的 CPU 比 union all 多,但可以忽略不计,一般情况下建议使用 in。

复制

select * from doc where status in (1, 2); 
  • 1.

or 新版的 MySQL 能够命中索引,查询优化耗费的 CPU 比 in多,不建议频繁用or。

复制

select * from doc where status = 1 or status = 2 
  • 1.

补充:有些地方说在where条件中使用or,索引会失效,造成全表扫描,这是个误区:

  • ①要求where子句使用的所有字段,都必须建立索引;
  • ②如果数据量太少,mysql制定执行计划时发现全表扫描比索引查找更快,所以会不使用索引;
  • ③确保mysql版本5.0以上,且查询优化器开启了index_merge_union=on, 也就是变量optimizer_switch里存在index_merge_union且为on。

3、负向条件查询不能使用索引

  • 负向条件有:!=、<>、not in、not exists、not like 等。
  • 例如下面SQL语句:
复制

select * from doc where status != 1 and status != 2; 
  • 1.

可以优化为 in 查询:

复制

select * from doc where status in (0,3,4); 
  • 1.

4、联合索引最左前缀原则

  • 如果在(a,b,c)三个字段上建立联合索引,那么他会自动建立 a| (a,b) | (a,b,c)组索引。
  • 登录业务需求,SQL语句如下:
复制

select uid, login_time from user where login_name=? andpasswd=? 
  • 1.
  • 可以建立(login_name, passwd)的联合索引。因为业务上几乎没有passwd 的单条件查询需求,而有很多login_name 的单条件查询需求,所以可以建立(login_name, passwd)的联合索引,而不是(passwd, login_name)。
  1. 建立联合索引的时候,区分度最高的字段在最左边
  2. 存在非等号和等号混合判断条件时,在建立索引时,把等号条件的列前置。如 where a>? and b=?,那么即使a 的区分度更高,也必须把 b 放在索引的最前列。
  3. 最左前缀查询时,并不是指SQL语句的where顺序要和联合索引一致。
  • 下面的 SQL 语句也可以命中 (login_name, passwd) 这个联合索引:
复制

select uid, login_time from user where passwd=? andlogin_name=? 
  • 1.
  • 但还是建议 where 后的顺序和联合索引一致,养成好习惯。

假如index(a,b,c), where a=3 and b like 'abc%' and c=4,a能用,b能用,c不能用。

5、不能使用索引中范围条件右边的列(范围列可以用到索引),范围列之后列的索引全失效

  • 范围条件有:<、<=、>、>=、between等。
  • 索引最多用于一个范围列,如果查询条件中有两个范围列则无法全用到索引。
  • 假如有联合索引 (empno、title、fromdate),那么下面的 SQL 中 emp_no 可以用到索引,而title 和 from_date 则使用不到索引。
复制

select * from employees.titles where emp_no < 10010' and title='Senior Engineer'and from_date between '1986-01-01' and '1986-12-31' 
  • 1.

6、不要在索引列上面做任何操作(计算、函数),否则会导致索引失效而转向全表扫描

例如下面的 SQL 语句,即使 date 上建立了索引,也会全表扫描:

复制

select * from doc where YEAR(create_time) <= '2016'; 
  • 1.

可优化为值计算,如下:

复制

select * from doc where create_time <= '2016-01-01'; 
  • 1.

比如下面的 SQL 语句:

复制

select * from order where date < = CURDATE(); 
  • 1.

可以优化为:

复制

select * from order where date < = '2018-01-2412:00:00'; 
  • 1.

7、强制类型转换会全表扫描

字符串类型不加单引号会导致索引失效,因为mysql会自己做类型转换,相当于在索引列上进行了操作。

如果 phone 字段是 varchar 类型,则下面的 SQL 不能命中索引。

复制

select * from user where phone=13800001234 
  • 1.

可以优化为:

复制

select * from user where phone='13800001234'; 
  • 1.

8、更新十分频繁、数据区分度不高的列不宜建立索引

  • 更新会变更 B+ 树,更新频繁的字段建立索引会大大降低数据库性能。
  • “性别”这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似。
  • 一般区分度在80%以上的时候就可以建立索引,区分度可以使用 count(distinct(列名))/count(*) 来计算。

9、利用覆盖索引来进行查询操作,避免回表,减少select * 的使用

  • 覆盖索引:查询的列和所建立的索引的列个数相同,字段相同。
  • 被查询的列,数据能从索引中取得,而不用通过行定位符 row-locator 再到 row 上获取,即“被查询列要被所建的索引覆盖”,这能够加速查询速度。
  • 例如登录业务需求,SQL语句如下。
复制

Select uid, login_time from user where login_name=? and passwd=? 
  • 1.
  • 可以建立(login_name, passwd, login_time)的联合索引,由于 login_time 已经建立在索引中了,被查询的 uid 和 login_time 就不用去 row 上获取数据了,从而加速查询。

10、索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时,尽量使用not null 约束以及默认值。

11、is null, is not null无法使用索引

12、如果有order by、group by的场景,请注意利用索引的有序性

order by 最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现file_sort 的情况,影响查询性能。

  • 例如对于语句 where a=? and b=? order by c,可以建立联合索引(a,b,c)。

如果索引中有范围查找,那么索引有序性无法利用,如 WHERE a>10 ORDER BY b;,索引(a,b)无法排序。

13、使用短索引(前缀索引)

  • 对列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果该列在前10个或20个字符内,可以做到既使得前缀索引的区分度接近全列索引,那么就不要对整个列进行索引。因为短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作,减少索引文件的维护开销。可以使用count(distinct leftIndex(列名, 索引长度))/count(*) 来计算前缀索引的区分度。
  • 但缺点是不能用于 ORDER BY 和 GROUP BY 操作,也不能用于覆盖索引。
  • 不过很多时候没必要对全字段建立索引,根据实际文本区分度决定索引长度即可。

14、利用延迟关联或者子查询优化超多分页场景

MySQL 并不是跳过 offset 行,而是取 offset+N 行,然后返回放弃前 offset 行,返回 N 行,那当 offset 特别大的时候,效率就非常的低下,要么控制返回的总页数,要么对超过特定阈值的页数进行 SQL 改写。

示例如下,先快速定位需要获取的id段,然后再关联:

selecta.* from 表1 a,(select id from 表1 where 条件 limit100000,20 ) b where a.id=b.id; 

15、如果明确知道只有一条结果返回,limit 1 能够提高效率

  • 比如如下 SQL 语句:
select * from user where login_name=?; 
  • 可以优化为:
select * from user where login_name=? limit 1 .

自己明确知道只有一条结果,但数据库并不知道,明确告诉它,让它主动停止游标移动。

16、超过三个表最好不要 join

  • 需要 join 的字段,数据类型必须一致,多表关联查询时,保证被关联的字段需要有索引。
  • 例如:left join是由左边决定的,左边的数据一定都有,所以右边是我们的关键点,建立索引要建右边的。当然如果索引在左边,可以用right join。

17、单表索引建议控制在5个以内

18、SQL 性能优化 explain 中的 type:至少要达到 range 级别,要求是 ref 级别,如果可以是 consts 最好

  • consts:单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。
  • ref:使用普通的索引(Normal Index)。
  • range:对索引进行范围检索。
  • 当 type=index 时,索引物理文件全扫,速度非常慢。

19、业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引

不要以为唯一索引影响了 insert 速度,这个速度损耗可以忽略,但提高查找速度是明显的。另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,根据墨菲定律,必然有脏数据产生。

20.创建索引时避免以下错误观念

索引越多越好,认为需要一个查询就建一个索引。

宁缺勿滥,认为索引会消耗空间、严重拖慢更新和新增速度。

抵制惟一索引,认为业务的惟一性一律需要在应用层通过“先查后插”方式解决。

过早优化,在不了解系统的情况下就开始优化。

索引选择性与前缀索引

  • 既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。
  • 第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。
  • 另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:
Index Selectivity = Cardinality / #T 
  • 显然选择性的取值范围为(0, 1]``,选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,employees.titles表,如果title`字段经常被单独查询,是否需要建索引,我们看一下它的选择性:
SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles; 
+-------------+ 
| Selectivity | 
+-------------+ 
|      0.0000 | 
+-------------+ 
  • title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。
  • 有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使用。
  • 假设employees表只有一个索引<emp_no>,那么如果我们想按名字搜索一个人,就只能全表扫描了:
EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido'; 
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ 
| id | select_type | table     | type | possible_keys | key  | key_len | ref  | rows   | Extra       | 
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ 
|  1 | SIMPLE      | employees | ALL  | NULL          | NULL | NULL    | NULL | 300024 | Using where | 
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+ 
  • 如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建<first_name>或
SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees; 
+-------------+ 
| Selectivity | 
+-------------+ 
|      0.0042 | 
+-------------+ 
SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees; 
+-------------+ 
| Selectivity | 
+-------------+ 
|      0.9313 | 
+-------------+ 
  • <first_name>显然选择性太低,`<first_name, last_name>选择性很好,但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?可以考虑用first_name和last_name的前几个字符建立索引,例如<first_name, left(last_name, 3)>,看看其选择性:
SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees; 
+-------------+ 
| Selectivity | 
+-------------+ 
|      0.7879 | 
+-------------+ 
    • 选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4:
SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees; 
+-------------+ 
| Selectivity | 
+-------------+ 
|      0.9007 | 
+-------------+ 
  • 这时选择性已经很理想了,而这个索引的长度只有18,比
ALTER TABLE employees.employees 
ADD INDEX `first_name_last_name4` (first_name, last_name(4)); 
  • 此时再执行一遍按名字查询,比较分析一下与建索引前的结果:
SHOW PROFILES; 
+----------+------------+---------------------------------------------------------------------------------+ 
| Query_ID | Duration   | Query                                                                           | 
+----------+------------+---------------------------------------------------------------------------------+ 
|       87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | 
|       90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' | 
+----------+------------+---------------------------------------------------------------------------------+ 
  • 性能的提升是显著的,查询速度提高了120多倍。
  • 前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。

MySQL索引如何优化?二十条铁则的更多相关文章

  1. 理解MySQL——索引与优化

    转自:理解MySQL——索引与优化 写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存 ...

  2. 【真·干货】MySQL 索引及优化实战

    热烈推荐:超多IT资源,尽在798资源网 声明:本文为转载文章,为防止丢失所以做此备份. 本文来自公众号:GitChat精品课 原文地址:https://mp.weixin.qq.com/s/6V7h ...

  3. MySQL数据库索引类型、MySQL索引的优化及MySQL索引案例

    关于MySQL索引的好处,如果正确合理设计并且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车.对于没有索引的表,单表查询可能几十万数据就是瓶颈,而通常大型 ...

  4. MySQL索引及优化(1)存储引擎和底层数据结构

    在昨天的面试中问到了MySQL索引怎么优化(查询很慢怎么办),回答的很不理想,所以今天来总结几篇关于MySQL索引的知识. 1.什么是索引? 首先我们一定要明确什么是索引?我自己的总结就是索引是一种数 ...

  5. mysql索引与优化

    mysql 索引与优化 http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html

  6. mysql索引的优化

    MySQL索引的优化 上面都在说使用索引的好处,但过多的使用索引将会造成滥用.因此索引也会有它的缺点:虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT.UPDATE和DEL ...

  7. MySQL 索引的优化

    一.MySQL如何使用索引(index) 1.1 索引概述 索引用于快速查找具有特定列值的行. 如果不使用索引,MySQL必须从表的第一行开始,然后扫描整个表来寻找符合条件的行.这种情况下,表越大,扫 ...

  8. (转)理解MySQL——索引与优化

    参考资料:http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html ———————————— 全文: 写在前面:索引对查询的速度有着 ...

  9. 1020理解MySQL——索引与优化

    转自http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html 写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性 ...

  10. MySQL——索引与优化

    http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html 写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调 ...

随机推荐

  1. 019 Linux tcpdump 抓包案例入门可真简单啊?

    目录 1 tcpdump 是什么? 2 tcpdump 常用命令参数 3 tcpdump 抓包wss,配合Wireshark分析 4 tcpdump 抓包白度,配合Wireshark分析) 5 tcp ...

  2. (转载)虚拟化(3):os调度策略。

    转自:https://zhuanlan.zhihu.com/p/38046313 这一章主要是介绍几个简单的调度器策略.内容比较简单,就简单汇总下. 首先我们对现有的计算机环境有如下几个假设: 1.每 ...

  3. 面向对象编程(C++篇2)——构造

    目录 1. 引述 2. 详述 2.1. 数据类型初始化 2.2. 类初始化 1. 引述 在C++中,学习类的第一课往往就是构造函数.根据构造函数的定义,构造函数式是用于初始化类对象的数据成员的.无论何 ...

  4. CentOS安装时,软件选择(Software Selection)项介绍

    要指定软件包将被安装,选择软件时选择安装摘要屏幕.包组分为基础环境.这些环境是预先定义的一组具有特定用途的软件包:例如,在虚拟化主机环境中包含的一组所需的系统上运行的虚拟机软件程序包.只有一个软件环境 ...

  5. vue用ElementUI导出Excel表格

    import axios from 'axios'; import qs from 'qs'; import { message } from 'element-ui';   export const ...

  6. Spring Cloud Alibaba 2021.0.1.0 发布:版本号再也不迷糊了

    大家好,DD又来了! 3月9日,Spring官方博客发文:Spring Cloud Alibaba 2021.0.1.0发布了. 前段时间DD还在微信群里看到小伙伴吐槽Spring Cloud Ali ...

  7. VMWare ESXi 6.0如何复制虚拟机

    1.复制前建议将待复制的虚拟机电源关闭. 2.登录ESXi 6.0主机后,点击"配置"选项卡,再点击"存储器". 3.能看得相关的数据存储,然后右键点击存储器如 ...

  8. LGP5493题解

    卡完常后来造福一下人类 如何从4.80s卡到920ms.jpg 本题解的复杂度为 \(O(\frac {n^{3/4}} {\log n})\),然而标算是 \(O(\frac {n^{2/3}} { ...

  9. oneAPI DPC++学习资料和实验平台

    DPC++ 一种新的异构平台,弥补了OPENCL 编写复杂的难题.基于SYCL 抽象层.基于SYCL 有多种实现,其中DPC++是相对成熟的方案. 书籍 由Intel工程师撰写的免费电子图书 Data ...

  10. vue3-关于使用element-plus第三方组件库时出现的一些问题的解决方案(1)

    这只是在使用element-plus组件开发过程中遇到的第一个问题,后面遇到更多问题及解决方案时会再同步到博客上来 --------------我是分割线------------------ 今天用到 ...