Luogu2290 [HNOI2004]树的计数 (组合计数,prufer编码)
这不prufer编码吗,防爆long long就行了啊
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 157;
#define int long long
int C[N][N];
inline void Prepare(int &n){
R(i,0,n){
C[i][0] = 1;
R(j,1,i){
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
}
}
int d[N];
#undef int
int main(){
#define int long long
int n;
io >> n;
int sum = 0;
if(n == 1){
io >> d[1];
if(!d[1]){
printf("1");
}
else{
printf("0");
}
return 0;
}
R(i,1,n){
io >> d[i];
if(!d[i]){
printf("0");
return 0;
}
--d[i];
sum += d[i];
}
if(sum != n - 2){
printf("0");
return 0;
}
Prepare(n);
sum = 0;
int ans = 1;
R(i,1,n){
ans *= C[n - 2 - sum][d[i]];
sum += d[i];
}
printf("%lld", ans);
return 0;
}
Luogu2290 [HNOI2004]树的计数 (组合计数,prufer编码)的更多相关文章
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- BZOJ 3162: 独钓寒江雪 树的同构 + 组合 + 计数
Description Input Output 求一棵树编号序列不同的方案数: 令 $f[u],g[u]$ 分别表示 $u$ 选/不选 的方案数. 则 $f[u]=\prod_{v\in son ...
- bzoj2839 集合计数 组合计数 容斥原理|题解
集合计数 题目描述 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是 ...
- bzoj1211: [HNOI2004]树的计数(prufer序列+组合数学)
1211: [HNOI2004]树的计数 题目:传送门 题解: 今天刚学prufer序列,先打几道简单题 首先我们知道prufer序列和一颗无根树是一一对应的,那么对于任意一个节点,假设这个节点的度数 ...
- 【BZOJ 1211】 1211: [HNOI2004]树的计数 (prufer序列、计数)
1211: [HNOI2004]树的计数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2468 Solved: 868 Description 一 ...
- bzoj1211: [HNOI2004]树的计数 prufer编码
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std ...
- [HNOI2004]树的计数 prufer数列
题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d( ...
- prufer BZOJ1211: [HNOI2004]树的计数
以前做过几题..好久过去全忘了. 看来是要记一下... [prufer] n个点的无根树(点都是标号的,distinct)对应一个 长度n-2的数列 所以 n个点的无根树有n^(n-2)种 树 转 p ...
- Luogu P2290 [HNOI2004]树的计数 Prufer序列+组合数
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可 ...
随机推荐
- fpn(feature-Pyramid-network)学习笔记
FPN(特征金字塔网络)学习笔记 论文 在物体检测里面,有限计算量情况下,网络的深度(对应到感受野)与 stride 通常是一对矛盾的东西,常用的网络结构对应的 stride 一般会比较大(如 32) ...
- DirectX11 With Windows SDK--19(Dev) 编译Assimp并加载模型、新的Effects框架
前言 注意:这一章进行了重写,对应教程Dev分支第19章的项目,在更新完后面的项目后会替换掉原来第19章的教程 在前面的章节中我们一直使用的是由代码生成的几何模型,但现在我们希望能够导入模型设计师生成 ...
- Zookeeper分布式锁实现Curator十一问
前面我们剖析了Redisson的源码,主要分析了Redisson实现Redis分布式锁的15问,理清了Redisson是如何实现的分布式锁和一些其它的特性.这篇文章就来接着剖析Zookeeper分布式 ...
- 全球共有多少MySQL实例在运行?这里有一份数据
摘要 Shadowserver Foundation在5月31日发布了一份全网的MySQL扫描报告,共发现了暴露在公网的360万个MySQL实例.因为这份报告基数够大,而且信息也非常完整,从数据库专业 ...
- JS:Array
js有五种基本数据类型:string,number,boolean,null,undefined 一种引用类型,包括:1.Object类型:2.Function类型:3.Array类型:4.RegEx ...
- FS2K人脸素描属性识别
人脸素描属性识别 代码:https://github.com/linkcao/FS2K_extract 问题分析 需要根据FS2K数据集进行训练和测试,实现输入一张图片,输出该图片的属性特征信息,提取 ...
- NC200190 矩阵消除游戏
NC200190 矩阵消除游戏 题目 题目描述 牛妹在玩一个名为矩阵消除的游戏,矩阵的大小是 \({n}\) 行 \({m}\) 列,第 \({i}\) 行第 \({j}\) 列的单元格的权值为 \( ...
- Lambda表达式的无参数无返回值的练习和Lambda表达式有参数有返回值的练习
使用Lambda(无参无返回) 说明:给定一个厨师(Cook)接口,内含唯一的抽象方法makeFood,且无参数.无返回值.如下: public interface Cook{ public abst ...
- C语言整形转字符串的方法
今天写力扣第九题,里面用到了这个,就做个笔记. 1. char *itoa( int value, char *string,int radix);(stdlib.h) Windows特有 ...
- Deep Learning-深度学习(二)
深度学习入门 1.随机梯度下降 在之前的学习过程当中,对于损失函数的最为重要的参数的梯度的更新是基于数据集中的所有数据,每一个数据都会进行到计算过程当中去,在本案例中,因为波士顿房价预测这个案例所涉及 ...