每当向他人介绍 Semantic Kernel, 会得到的第一个问题就是 Semantic Kernel 类似于LangChain吗,或者是c# 版本的LangChain吗? 为了全面而不想重复的回答这个问题,因此我写下这篇文章。

ChatGPT 之前,构建 集成AI的应用程序的主要分为两个步骤:

  1. 机器学习工程师/数据科学家创建模型,然后通过 REST API 终结点发布此模型。
  2. 应用程序开发人员通过传递确定性参数来调用 REST API 终结点。

有了GPT以后 构建与 AI 集成的应用程序过去要简单得多,应用程序员开发人员直接访问OpenAI的REST API,将它集成到我们的应用中,但是真正开始集成的时候才发现挑战不仅仅是调用API,例如:

  • 如何将OpenAI与内部知识搜索(内部文档,数据库,SharePoint等)集成
  • 如何将OpenAI与其他系统集成,如SAP,ERP,CRM,HR系统,IT票务系统等。
  • 如何有效地跟踪聊天对话历史记录
  • 如何以可配置的方式将提示实现到代码中(而不是使它们看起来像魔术字符串))
  • 如何最小化使用的Token
  • 如何在服务限制内和围绕服务配额和限制工作 - 更具体地说,围绕最大请求数/分钟
  • 以及更多...

这中间需要有一个业务流程协调程序。该服务编排来自各种依赖项(OpenAI、Azure 搜索、数据库等)的输入和输出,并将其拼接在一起。

  • 这种模式可以从微软最近发布的Copilot服务中看出。请注意,GitHub Copilot、M365 Copilot、D365 Copilot 和Security Copilot的架构之间都有一个“Copilot Service”,用于将应用程序与LLM模型和其他服务链接起来。
  • 另请注意,微软在架构图中提到了的是“LLM”,而不是“GPT-4”。这是因为业务流程协调程序服务同时使用不同的 LLM 来实现其目的。

这就是像Semantic KernelLangChain这样的库的用武之地。这些库可帮助开发人员:

  • 管理对话历史记录,这是ChatCompletionAPI 希望开发人员弄清楚的。
  • 根据意图规划方法。
  • 为该方法实现“链接”
  • 管理Memory和服务连接要求(即对话历史记录、外部 API 等)

LangChain目前是“最成熟”(但相当新的)拥有大型开源社区的。第一次提交是在 2022 年10月。

  • 它支持Python和TypeScript,其中Python具有更多功能
  • 大多数在线文章都使用Jupyter笔记本 演示 LangChain,LangChai也不把自己被称为“SDK”,它是为习惯于使用笔记本的ML工程师构建的。
  • 应用程序开发人员需要弄清楚如何组织代码和使用 LangChain,软件工程方面的组织相对SK 显得差了很多。
  • LangChainHarrison Chase创立,他的职业是ML工程师,更多是从ML 工程师角度架构应用。
  • LangChain开源社区的贡献非常活跃,目前已经有29k star。

Semantic Kernel(SK)是相对“较新的”,但它是为开发人员构建的。第一次提交是在 2023 年 2 月。

  • 它主要面向 C# 开发人员,它也支持 Python,(功能另请参阅功能奇偶校验文档)。
  • 因为它是为开发人员构建的,所以它被称为轻量级 SDK,可帮助开发人员将代码组织到内置于 Planner 中的技能、记忆和连接器中(在此处阅读更多内容)。
  • 示例代码中有很多业务流程协调程序 Web 服务的示例。
  • SK由一个以软件开发工程能力超强的组织(微软)创立。开源社区规模也相当活跃,目前已经有5.7k star。
  • 它是由微软创立的,文档方面做的也非常好,它有一个官方的支持页面LinkedIn学习课程
  • 由于 SK 在构建时考虑了应用,因此有一个 MS Graph连接器工具包,适用于需要与日历、电子邮件、OneDrive 等集成的方案。

这两个库我们选择使用哪一个,我觉得主要的考虑因素是开发人员的技能,LLM 已经将机器学习的门槛降低到普通开发人员就可以开发AI应用,SK 在帮助应用开发人员开发AI方面的帮助会比LangChain更大,我会选择采用SK来构建AI应用。

LangChain vs Semantic Kernel的更多相关文章

  1. Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network(GCN全局卷积网络)

    作者认为语义分割的两个挑战是分类和定位,而这两个挑战又是比较对立的.对于分类问题,模型需要有变形和旋转不变形,而对于定位问题,模型有需要对变形敏感. 提出的GCN遵循两个主要原则: 1.对定位问题,模 ...

  2. 谈一谈深度学习之semantic Segmentation

    上一次发博客已经是9月份的事了....这段时间公司的事实在是多,有写博客的时间都拿去看paper了..正好春节回来写点东西,也正好对这段时间做一个总结. 首先当然还是好好说点这段时间的主要工作:语义分 ...

  3. The user's guide what comes in the kernel Documentation directory

    The Linux IPMI Driver --------------------- Corey Minyard <minyard@mvista.com> <minyard@acm ...

  4. Review of Semantic Segmentation with Deep Learning

    In this post, I review the literature on semantic segmentation. Most research on semantic segmentati ...

  5. Fully Convolutional Networks for Semantic Segmentation 译文

    Fully Convolutional Networks for Semantic Segmentation 译文 Abstract   Convolutional networks are powe ...

  6. Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning

    创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 cha ...

  7. 图像分割:Semantic/Instance/Panoramic Segmentation

    一. 背景介绍 语义分割(Semantic Segmentation):对一张图片上的所有像素点进行分类,同一物体的不同实例不需要单独分割出来. 实例分割(Instance Segmentation) ...

  8. Linux 内核概述 - Linux Kernel

    Linux 内核学习笔记整理. Unix unix 已有40历史,但计算机科学家仍认为其是现存操作系统中最大和最优秀的系统,它已成为一种传奇的存在,历经时间的考验却依然声名不坠. 1973 年,在用 ...

  9. 04.ubuntu下kvm 命令行安装64位ubuntu报"Couldn't find hvm kernel for Ubuntu tree."的问题

    1.安装ubuntu时使用的virt-install的配置: virt-install \ --name test4 \ --ram 1024 \ --disk path=/data/01_ubunt ...

  10. 语义网 (Semantic Web)和 web 3.0

    语义网=有意义的网络. "如果说 HTML 和 WEB 将整个在线文档变成了一本巨大的书,那么 RDF, schema, 和 inference languages 将会使世界上所有的数据变 ...

随机推荐

  1. 吴恩达机器学习-终于完成ex4

    几年前就想学习吴恩达的老课-机器学习,学了n次都没有坚持下来.其实很多东西都是这样,开始的时候信誓旦旦,信心满满,慢慢的就泄气了. 每天铺天盖地的深度学习,人工智能听得耳朵都要起茧子了.这算法,那框架 ...

  2. 用C#语言实现记事本

    一.实验内容: 二.记事本所需功能: (1)记事本程序具有文件的新建.打开.保存功能: (2)文字的复制.粘贴.删除功能:字体类型.格式的设置功能: (3)查看日期时间等功能,并且用户可三根据需要显示 ...

  3. manjaro安装指导

    本文"指导"二字口气有点大,是说给自己听的,指导我下次的安装. 正文: 1.安装系统:在清华大学开源站上下载KDE版(本机适用19版54内核无驱动问题),用rufus烧制启动盘,以 ...

  4. 安装mysql8.0

    安装repo源 参考mysql官方文档 参考文章 redhat7通过yum安装mysql5.7.17教程:https://www.jb51.net/article/103676.htm mysql r ...

  5. Java基础学习——循环取最接近某个值的方法

    if(diff<mindiff) mindiff=diff;//循环取最小值 float value = (float) fenzi/fenmu;//整数相除结果会自动转换为整数.即使强制转换为 ...

  6. Word 给公式添加题注解决交叉引用中包含公式

    简记:回车,然后 Ctrl +Alt+Enter https://blog.csdn.net/wsj_jerry521/article/details/115163456

  7. 树莓派利用摄像头实现web在线监控

    1.https://shumeipai.nxez.com/2021/10/21/raspberry-pi-usb-camera-to-realize-remote-network-monitoring ...

  8. 随笔:for in 和 for of的区别

    百度前端面试题:for in 和 for of的区别详解以及为for in的输出顺序 - 知乎 以该页面为例,我稍微总结一点东西: 在这⾥我们把对象中的数字属性称为 「排序属性」,在V8中被称为 el ...

  9. win10修复系统

    DISM.exe /Online /Cleanup-image /Restorehealth sfc /scannow

  10. HTTP通信基础

    1. HTTP通信流程: 1)输入www.baidu.com2)解析成IP地址:192.168.0.13)浏览器通过该IP访问web服务器获取web资源4)再返回给客户端5)最后呈现在用户面前 2.  ...