比赛链接

A

题解

知识点:贪心,数论。

先求出序列最大公约数 \(d\) ,如果为 \(1\) 直接输出 \(0\) 。

否则,尝试用最后一个数操作, \(gcd(d,n) = 1\) 则可以,花费为 \(1\) 。

否则,用倒数第二个数操作,\(gcd(d,n-1) = 1\) (不必担心 \(n-1 = 0\) ,因为此时上一步一定成功),花费为 \(2\) 。

否则,用倒数两个数操作,一定成功,因为 \(gcd(n-1,n)=1\) ,花费为 \(3\) 。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[27];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i];
int d = a[1];
for (int i = 2;i <= n;i++) d = __gcd(a[i], d);
if (d == 1) cout << 0 << '\n';
else if (__gcd(d, n) == 1) cout << 1 << '\n';
else if (__gcd(d, n - 1) == 1) cout << 2 << '\n';
else cout << 3 << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

B

题解

知识点:贪心。

显然左侧已经排好的不用管,从第一段 \(1\) 开始记录后面一共分成的段数 \(cnt\)(如 0000|111|00|1|0|1|0 有 \(6\) 段)。若 \(cnt > 1\) ,则从第一段开始使用操作,每次可以将一段变为 \(0\) (后面也会改变),直到最后一段不用更改,一共操作 \(cnt-1\) 次。另外,如果 \(cnt = 0\) ,答案也是 \(0\) 。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; bool solve() {
int n;
cin >> n;
string s;
cin >> s;
s = "?" + s;
bool st = 0;
int cnt = 0;
for (int i = 1;i <= n;i++) {
if (s[i] != st + '0') {
cnt++;
st ^= 1;
}
}
cout << max(cnt - 1, 0) << '\n';
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

C

题解

知识点:枚举,双指针,位运算,前缀和,贪心。

因为异或相当于不进位的加法,那么前缀和减去前缀异或和一定是非减的,于是一个贪心的结论:最大值一定是 \(f(L_i,R_i)\) 的值。接下来需要用这个值,求一个最小区间。

为了方便区间运算,我们预处理一个前缀和,以及一个前缀异或和。

可以证明,最多删除 \(31\) 个非 \(0\) 元素,否则区间值必然减小。因为在 int 范围内, \(31\) 个二进制位,最多能分配给 \(31\) 个数一个不同为值的 \(1\) ,这样能使这 \(31\) 个数对答案没有贡献,实际情况不会超过 \(31\) ,因此我们放心大胆的枚举端点就行了。我们只需要考虑非 \(0\) 点,遍历一遍存一下非 \(0\) 点坐标即可。左端点从左往右,内循环右端点从右往左,区间等于最大值的如果长度更小就更新答案。

另外,需要特判没有非 \(0\) 元素的情况,此时直接输出 \(L,L\) 即可。

时间复杂度 \(O(n+q\log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int a[100007];
ll sum[100007], sumx[100007];
bool solve() {
int n, q;
cin >> n >> q;
for (int i = 1;i <= n;i++) cin >> a[i];
vector<int> pos;
for (int i = 1;i <= n;i++) {
sum[i] = sum[i - 1] + a[i];
sumx[i] = sumx[i - 1] ^ a[i];
if (a[i]) pos.push_back(i);
}
while (q--) {
int L, R;
cin >> L >> R;
int l = lower_bound(pos.begin(), pos.end(), L) - pos.begin();
int r = upper_bound(pos.begin(), pos.end(), R) - pos.begin() - 1;
auto get = [&](int _l, int _r) {return sum[_r] - sum[_l - 1] - (sumx[_r] ^ sumx[_l - 1]);};
ll val = get(L, R);
int ansl = 0, ansr = n + 1;
for (int i = l;i <= r;i++) {
if (get(pos[i], pos[r]) < val) break;//可以证明无论左右端点至多删除31个非0元素对答案没有影响(0,2,4,8,...鸽巢原理)
for (int j = r;j >= i;j--) {
if (get(pos[i], pos[j]) < val) break;
if (pos[j] - pos[i] + 1 < ansr - ansl + 1) {
ansl = pos[i];
ansr = pos[j];
}
}
}
if (ansr - ansl + 1 > n) cout << L << ' ' << L << '\n';
else cout << ansl << ' ' << ansr << '\n';
}
return true;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}

D1

题解

知识点:STL,枚举。

用一个 set<ll> vis 维护出现过的元素,再用一个 map<ll,ll> last 维护某个元素上一次的询问结果,下一次询问这个元素时直接从上一次结果开始。

每个元素 \(i\) 只经过其倍数一次,共 \(\dfrac{n}{i}\) 次。所有元素次数之和 \(O(\sum \dfrac{n}{i}) = O(n \log n)\) 。

时间复杂度 \(O(q \log^2 q)\)

空间复杂度 \(O(q)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int q;
cin >> q;
set<ll> vis;
map<ll, ll> last;
while (q--) {
char op;
ll x;
cin >> op >> x;
if (op == '+') {
vis.insert(x);
}
else {
if (!last.count(x)) last[x] = x;
while (vis.count(last[x])) last[x] += x;
cout << last[x] << '\n';
}
}
return 0;
}

D2

题解

知识点:STL,枚举。

因为存在删除已存在元素的操作,这意味着我们之前得到的答案在未来可能不适用。

因此需要对每个已询问过的数字维护一个已删除集合 map<ll,set<ll>> del ,来得到目前某个元素的最大询问结果之前,是否有在序列中被删除的倍数。

对于已删除集合的维护,需要对每个询问过程中遍历到的且存在于序列中的倍数维护一个影响列表 map<ll,vector<ll>> chg ,来得到修改序列某个元素的状态时,哪些询问过的元素的已删除集合会被修改。

如此我们就维护了带删除求 mex 的数据结构。

时间复杂度 \(O(q \log ^2 q)\)

空间复杂度 \(O(q\log q)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int q;
cin >> q;
set<ll> vis;//序列中存在的元素
map<ll, ll> last;//某元素最大询问结果:记录需要维护的数据上界,超出最大询问结果的不需要考虑
map<ll, set<ll>> del;//某元素的已删除集合:最大询问结果内,目前不存在于序列中的倍数
map<ll, vector<ll>> chg;//某元素的影响列表:更改序列中某元素状态,已删除集合将发生变化的元素列表
while (q--) {
char op;
ll x;
cin >> op >> x;
if (op == '+') {
vis.insert(x);
for (auto y : chg[x]) del[y].erase(x);//删除受x影响元素的已删除集合中的x,因为x已存在
}
else if (op == '-') {
vis.erase(x);
for (auto y : chg[x]) del[y].insert(x);//增加受x影响元素的已删除集合中的x,因为x已删除
}
else {
if (!last.count(x)) last[x] = x;//新增已询问元素
if (del[x].size()) cout << *del[x].begin() << '\n';//已删除集合存在元素,优先使用
else {//考虑最大询问结果是否可行,否则扩大最大询问结果
while (vis.count(last[x])) {
chg[last[x]].push_back(x);//已存在的x的倍数,在未来可能会被修改状态,影响x的结果
last[x] += x;
}
cout << last[x] << '\n';
}
}
}
return 0;
}

Codeforces Round #830 (Div. 2) A-D的更多相关文章

  1. Codeforces Round #830 (Div. 2)D2. Balance (Hard version)(数据结构)

    题目链接 题目大意 维护一个集合的mex,每次有三种操作: '+' x:将数 x 插入集合中 '-' x:将数 x 移除集合 '?' k:询问满足mex的数是k的倍数 既集合中未出现的数中最小的数可以 ...

  2. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  3. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  4. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  5. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  6. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  7. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

  8. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  9. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

随机推荐

  1. Git 01 介绍

    参考源 https://www.bilibili.com/video/BV1FE411P7B3?spm_id_from=333.999.0.0 版本 本文章基于 Git 2.35.1.2 版本控制 版 ...

  2. 从零搭建云原生技术kubernetes(K8S)环境-通过kubesPhere的AllInOne方式

    前言 k8s云原生搭建,步骤有点多,但通过kubesphere,可以快速搭建k8s环境,同时有一个以 Kubernetes 为内核的云原生分布式操作系统-kubesphere,本文将从零开始进行kub ...

  3. RabbitMQ 入门系列:3、基础含义:持久化、排它性、自动删除、强制性、路由键。

    系列目录 RabbitMQ 入门系列:1.MQ的应用场景的选择与RabbitMQ安装. RabbitMQ 入门系列:2.基础含义:链接.通道.队列.交换机. RabbitMQ 入门系列:3.基础含义: ...

  4. HMS Core基于地理位置请求广告,流量变现快人一步

    对于想买车的用户来说,如果走在路上刷社交软件时突然在App里收到一条广告:"前方500米商圈里的某品牌汽车正在做优惠,力度大福利多."不管买不买,八成都会去看看,原因有三:距离近. ...

  5. Linux之firewalld防火墙规则

    一, 什么是防火墙规则? 允许哪些服务端口被放行,怎么放行,及哪些服务端口被阻拦,如何阻拦的一组网络安全规则.支持ipv4和ipv6,且分为直接规则和富规则两种. 二, 如何管理firewalld 1 ...

  6. 闭包 与 js内存管理

    参考:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Memory_Management            https://blog ...

  7. KingbaseES V8R6集群管理运维案例之---repmgr standby switchover故障

    案例说明: 在KingbaseES V8R6集群备库执行"repmgr standby switchover"时,切换失败,并且在执行过程中,伴随着"repmr stan ...

  8. PostgreSQL 涉及复杂视图查询的优化案例

    一.前言 对于含有union , group by 等的视图,我们称之为复杂视图. 这类的视图会影响优化器对于视图的提升,也就是视图无法与父查询进行合并,从而影响访问路径.连接方法.连接顺序等.本文通 ...

  9. K8S_删除Pod总结

    K8S 不能直接删除Pod,直接删除Pod,会被Deployment重启 删除前,必须先删除对应的Deployment 例子: // 查出Pod [root@k8s-master ~]# kubect ...

  10. 注解@DependsOn解析

    作用 @DependsOn注解可以定义在类和方法上,意思是我这个组件要依赖于另一个组件,也就是说被依赖的组件会比该组件先注册到IOC容器中. 在哪里被解析 解析的地方在 ComponentScanAn ...