树形选择排序解释

树形选择排序 又称为锦标赛排序,其实理解起来很简单。

数组的 n 个元素就好像在进行锦标赛一样,每一轮小比赛每两个一组决出胜负(比较谁更小)。

再将每一轮的胜者每两个一组进行小比赛,直到最后决出唯一的胜者(即当前最小元素)。很明显,锦标赛构成图的形状就是一个满二叉树捏。

每一次锦标赛决出的最终胜者(最小元素),我们要将其退出比赛,即放到原数组中。

重复上述操作,n 次锦标赛,即可完成排序。

那么具体如何实现呢?

我们需要用定义一个 tree[] 数组用来存储这个满二叉树。

首先我们需要录入叶子节点,也就是我们需要排序的数组中的所有元素。

然后根据二叉树在数组中的表示方法,我们知道 若二叉树某个节点的下标为 i,可得其左孩子节点的下标为 2 * i + 1,右孩子节点下标为 2 * i + 2

由此通过现有的叶子节点,可以得到其父节点的值,形象地说就是可以得到两个叶子节点的决胜者,即较小值。

当每次得到当前最小值,我们需要定义一个 minindextree[] 中寻找到当前这个最小值的索引,并将其置 MAX(这样就好像是它退出锦标赛了)


树形选择排序动态演示

我们以 [1, 4, 2, 3] 为例进行动态演示

第一次锦标赛得到决胜者

第二次锦标赛得到决胜者

第三次锦标赛得到决胜者

第四次锦标赛得到决胜者


树形选择排序时间复杂度

每次决出当前最小值,需要进行 log2n 次比较,总共需要进行 n 次锦标赛,所以时间复杂度


树形选择排序核心代码

void TreeSelectSort(int a[], int n){
int nodesum = n * 2 - 1; //满二叉树节点总数
int *tree = new int[nodesum];
/* 录入叶子节点 */
for(int i = n - 1, j = 0; i >= 0; i--, j++)
tree[nodesum - j - 1] = a[i];
/* 录入非叶子节点 */
for(int i = nodesum - n - 1; i >= 0; i--)
tree[i] = tree[2 * i + 1] < tree[2 * i + 2] ? tree[2 * i + 1] : tree[2 * i + 2];
/* 每次找出最小元素并复制到原数组 */
int k = 0, minindex = -1;
while(k < n){
int min = tree[0]; //当前的树根节点值即为最小元素
a[k++] = min;
minindex = nodesum - 1;
/* 从最后叶子节点开始,找到最小值位置,并将其置MAX */
while(tree[minindex] != min)
minindex--;
tree[minindex] = INT_MAX;
/* 若此节点有父节点,将其兄弟节点值提升到父节点位置 */
while(minindex > 0){
if(minindex % 2 == 1){
//该节点为左节点
tree[(minindex - 1)/2] = tree[minindex] < tree[minindex + 1] ? tree[minindex] : tree[minindex + 1];
minindex = (minindex - 1)/2;
}else{
//该节点为右节点
tree[minindex/2 - 1] = tree[minindex] < tree[minindex - 1] ? tree[minindex] : tree[minindex - 1];
minindex = minindex/2 - 1;
}
}
}
delete[] tree;
}

完整程序源代码

#include<iostream>
#include<ctime>
using namespace std; void TreeSelectSort(int a[], int n){
int nodesum = n * 2 - 1; //满二叉树节点总数
int *tree = new int[nodesum];
/* 录入叶子节点 */
for(int i = n - 1, j = 0; i >= 0; i--, j++)
tree[nodesum - j - 1] = a[i];
/* 录入非叶子节点 */
for(int i = nodesum - n - 1; i >= 0; i--)
tree[i] = tree[2 * i + 1] < tree[2 * i + 2] ? tree[2 * i + 1] : tree[2 * i + 2];
/* 每次找出最小元素并复制到原数组 */
int k = 0, minindex = -1;
while(k < n){
int min = tree[0]; //当前的树根节点值即为最小元素
a[k++] = min;
minindex = nodesum - 1;
/* 从最后叶子节点开始,找到最小值位置,并将其置MAX */
while(tree[minindex] != min)
minindex--;
tree[minindex] = INT_MAX;
/* 若此节点有父节点,将其兄弟节点值提升到父节点位置 */
while(minindex > 0){
if(minindex % 2 == 1){
//该节点为左节点
tree[(minindex - 1)/2] = tree[minindex] < tree[minindex + 1] ? tree[minindex] : tree[minindex + 1];
minindex = (minindex - 1)/2;
}else{
//该节点为右节点
tree[minindex/2 - 1] = tree[minindex] < tree[minindex - 1] ? tree[minindex] : tree[minindex - 1];
minindex = minindex/2 - 1;
}
}
}
delete[] tree;
} void show(int *a, int n){
for(int i = 0; i < n; i++)
cout<<*(a + i)<<" ";
cout<<endl;
} main(){
int a[50];
srand((int)time(0));
int k = 0;
while(k < 50)
a[k++] = rand() % 100 + 1;
show(a, 50); TreeSelectSort(a, 50); cout<<endl<<endl;
show(a, 50);
}

程序运行结果图

[排序算法] 树形选择排序 (C++)的更多相关文章

  1. Python排序算法之选择排序定义与用法示例

    Python排序算法之选择排序定义与用法示例 这篇文章主要介绍了Python排序算法之选择排序定义与用法,简单描述了选择排序的功能.原理,并结合实例形式分析了Python定义与使用选择排序的相关操作技 ...

  2. 八大排序算法~简单选择排序【记录下标k变量的作用】

    八大排序算法~简单选择排序[记录下标k变量的作用] 1,思想:打擂台法,数组中的前n-1个元素依次上擂台"装嫩",后边的元素一个挨着一个不服,一个一个上去换掉它 2,优化:通过记录 ...

  3. 排序算法总结------选择排序 ---javascript描述

    每当面试时避不可少谈论的话题是排序算法,上次面试时被问到写排序算法,然后脑袋一懵不会写,狠狠的被面试官鄙视了一番,问我是不是第一次参加面试,怎么可以连排序算法都不会呢?不过当时确实是第一次去面试,以此 ...

  4. 八大排序算法之四选择排序—堆排序(Heap Sort)

    堆排序是一种树形选择排序,是对直接选择排序的有效改进. 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素) ...

  5. 【DS】排序算法之选择排序(Selection Sort)

    一.算法思想 选择排序是一种简单直观的排序算法.它的工作原理如下: 1)将序列分成两部分,前半部分是已经排序的序列,后半部分是未排序的序列: 2)在未排序序列中找到最小(大)元素,放到已排序序列的末尾 ...

  6. 八大排序算法之三选择排序—简单选择排序(Simple Selection Sort)

    基本思想: 在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换:然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素 ...

  7. 常用排序算法之——选择排序(C语言+VC6.0平台)

    选择排序是另一种经典排序算法,核心思想是:在一趟找最小(大)数的过程中,先假设待排数据中的第一个数据即为最小(大)数据,然后循环将其他数据与该数据比较,每次比较时若小于该数据则让新数据成为最小(大)数 ...

  8. Java排序算法之选择排序

    一.算法原理 简单选择排序的基本思想:给定数组:int[] arr={里面n个数据}:第1趟排序,在待排序数据arr[1]~arr[n-1]中选出最小的数据,将它与arrr[0]交换:第2趟,在待排序 ...

  9. 【排序算法】选择排序(Selection sort)

    0. 说明 选择排序(Selection sort)是一种简单直观的排序算法. 它的工作原理如下. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最 ...

  10. 我的Java开发学习之旅------>Java经典排序算法之选择排序

    一.算法原理 对比数组中前一个元素跟后一个元素的大小,如果后面的元素比前面的元素小则用一个变量k来记住他的位置, 接着第二次比较,前面"后一个元素"现变成了"前一个元素& ...

随机推荐

  1. Gitea 1.17.1 正式发布 | 08 累积更新

    Gitea 1.17.1 已正式发布.在这个小的版本更新中我们合并了 35 个 PR,没有包含功能性的更改,但我们强烈建议用户升级到此版本以获得重要的修复补丁. 致谢:感谢报告问题的安全研究人员,同时 ...

  2. 注解@PostConstruct分析

    作用 1.注解@PostConstruct可以添加在类的方法上面,如果这个类被IOC容器托管,那么在对Bean进行初始化前的时候会调用被这个注解修饰的方法 被定义在哪里? 1.被定义在了CommonA ...

  3. Windows服务器限制进程CPU使用率

    在Windows server 2012 之前的服务系统 2008和2008 R2中有系统资源管理器System Resource Manager可以管理系统的CPU和内存使用情况.特别对于一些自己开 ...

  4. 《吐血整理》高级系列教程-吃透Fiddler抓包教程(22)-如何使用Fiddler生成Jmeter脚本-下篇

    1.简介 今天这篇文章其实和上一篇差不多也是利用一个fiddler的插件进行Jmeter脚本的导出,开始宏哥想要合在一起写一篇文章,可是结果实践的时候,两个插件还是有区别的,因此为了不绕晕小伙伴或者童 ...

  5. Ceph分布式存储详述

    存储发展史 企业中使用存储按照其功能,使用场景,一直在持续发展和迭代,大体上可以分为四个阶段: DAS:Direct Attached Storage,即直连存储,第一代存储系统,通过SCSI总线扩展 ...

  6. 官方使用logstash同步Mysql数据表到ES的摘抄

    官方文档地址:https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html#plugins-inputs-jdbc ...

  7. Linux常用基础指令

    Linux常用指令 一.基础命令 whoami查看当前用户 pwd查看当前所在位置 ls 查看当前文件夹的内容 ls -l或ll显示详细内容 cd 绝对路径:从根目录开始的路径 cd / 文件夹 返回 ...

  8. 【.NET 6+Loki+Grafana】实现轻量级日志可视化服务功能

    前言:日志功能是几乎所有程序或系统都必备的一个功能.该文章通过使用Loki+Grafana来实现日志记录与可视化查询,欢迎围观. 有关环境: 操作系统:WIN 10 .NET环境:.NET 6 开发环 ...

  9. P7962 [NOIP2021] 方差 (DP)

    题目的意思就是可以交换差分数组,对答案进行化简:n∑ai2​−(∑ai​)2 ,再通过手玩分析可得最优解的差分数组一定是单谷(可以感性理解一下),因此我们将差分数组排序,依次加入,每次可以选择加在左边 ...

  10. emqx启用JWT令牌认证(包含hmac-based和public-key)

    emqx连接启用jwt令牌认证 jwt令牌 概述 JWT 即 JSON Web Tokens 是一种开放的,用于在两方之间安全地表示声明的行业标准的方法(RFC 7519). 组成 令牌的形式 xxx ...