转载地址:http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数
 def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1

执行 fab(5),我们可以得到如下输出:

 >>> fab(5)
1
1
2
3
5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版
 def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L

可以使用如下方式打印出 fab 函数返回的 List:

 >>> for n in fab(5):
... print n
...
1
1
2
3
5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代
 for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

 for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本
 class Fab(object): 

    def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1 def __iter__(self):
return self def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5):
... print n
...
1
1
2
3
5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版
 def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1 '''

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5):
... print n
...
1
1
2
3
5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程
 >>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断
 >>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例
 >>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True

fab 是无法迭代的,而 fab(5) 是可迭代的:

 >>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

 >>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5
 

回页首

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

 

回页首

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子
 def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

python "yield"(转载)的更多相关文章

  1. 【转】Python yield 使用浅析

    转载地址: www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初学 Python 的开发者经 ...

  2. Python yield与实现

    Python yield与实现  yield的功能类似于return,但是不同之处在于它返回的是生成器. 生成器 生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭 ...

  3. Python yield 使用浅析(转)

    Python yield 使用浅析 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到 ...

  4. python yield from 语法

    python yield from 语法 yield语法比较简单, 教程也很多 , yield from的中文讲解很少 , python官网是这样解释的 PEP 380 adds the yield ...

  5. python yield用法 (tornado, coroutine)

    yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行.也就是说,y ...

  6. python yield 与 yield from转

    python yield 与 yield from转 https://blog.csdn.net/chenbin520/article/details/78111399?locationNum=7&a ...

  7. 转:Python yield 使用浅析 from IBM Developer

    评注:没有看懂. 转: https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初 ...

  8. python yield关键词使用总结

    python yield关键词使用总结 by:授客 QQ:1033553122 测试环境 win10 python 3.5 yield功能简介 简单来说,yield 的作用就是把一个函数变成一个 ge ...

  9. Python yield 使用浅析【转】

    Python yield 使用浅析 IBM developerWorks 中国 : Open source IBM 开源 - IBM Developer 中国 (原 developerWorks 中国 ...

随机推荐

  1. ebs如何将客户化的PL/SQL程序发布到webservice

    as:cux_gl_hec_iface_soa_pkg. 1.将package声明部分的内容拷贝出来另存为cux_gl_hec_iface_soa_pkg.pls的文件: 2.将该文件上传到服务器上拥 ...

  2. IOS 中openGL使用教程1(openGL ES 入门篇 | 搭建openGL环境)

    OpenGL版本 iOS系统默认支持OpenGl ES1.0.ES2.0以及ES3.0 3个版本,三者之间并不是简单的版本升级,设计理念甚至完全不同,在开发OpenGL项目前,需要根据业务需求选择合适 ...

  3. SQL语句的增删查改

    一.增:有2种方法 1.使用insert插入单行数据: 语法:insert [into] <表名> [列名] values <列值> 例:insert into Strdent ...

  4. Openlayers简介

    OpenLayers 是由MetaCarta公司开发的,用于WebGIS客户端的 JavaScript包,目前的最高版本是2.5 V,通过BSD License 发行.它实现访问地理空间数据的方法都符 ...

  5. Spark Streaming资源动态申请和动态控制消费速率剖析

    本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再 ...

  6. ajax通讯之格式详解

    前言: ajax的出现,一定程度上改变了js的命运,同时也被广泛使用,而jq的兴起也大大降低了ajax的使用难度.虽然,jq的ajax方法使用起来十分便利,但是大部分开发人员也仅仅只是对其中的几个属性 ...

  7. 【Python】pymongo使用

    官方文档:http://api.mongodb.com/python/current/index.html MongoReplicaSetClient:http://api.mongodb.com/p ...

  8. 记录在windows7上安装MongoDB

    1.首先下载   官网地址  https://www.mongodb.com/download-center#community 选择 Windows Vista 32-bit, without SS ...

  9. javaWeb学习-----session

    一.Session简单介绍 在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据时,服务 ...

  10. hibernate框架之-查询结果集返回类型

    Hibernate支持HQL和SQL的查询,返回结果支持POJO类型或字段/数组的形式. 开发中用Hibernate进行数据库查询,用的是SQL.原来需要查询一个表的几乎所有字段,所以我使用了addE ...