python "yield"(转载)
转载地址:http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/
您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
执行 fab(5),我们可以得到如下输出:
>>> fab(5)
1
1
2
3
5
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L
可以使用如下方式打印出 fab 函数返回的 List:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代
for i in range(1000): pass
会导致生成一个 1000 个元素的 List,而代码:
for i in xrange(1000): pass
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
class Fab(object): def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1 def __iter__(self):
return self def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
>>> for n in Fab(5):
... print n
...
1
1
2
3
5
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1 '''
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True
fab 是无法迭代的,而 fab(5) 是可迭代的:
>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5
return 的作用
在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
另一个例子
另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
python "yield"(转载)的更多相关文章
- 【转】Python yield 使用浅析
转载地址: www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初学 Python 的开发者经 ...
- Python yield与实现
Python yield与实现 yield的功能类似于return,但是不同之处在于它返回的是生成器. 生成器 生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭 ...
- Python yield 使用浅析(转)
Python yield 使用浅析 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到 ...
- python yield from 语法
python yield from 语法 yield语法比较简单, 教程也很多 , yield from的中文讲解很少 , python官网是这样解释的 PEP 380 adds the yield ...
- python yield用法 (tornado, coroutine)
yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行.也就是说,y ...
- python yield 与 yield from转
python yield 与 yield from转 https://blog.csdn.net/chenbin520/article/details/78111399?locationNum=7&a ...
- 转:Python yield 使用浅析 from IBM Developer
评注:没有看懂. 转: https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初 ...
- python yield关键词使用总结
python yield关键词使用总结 by:授客 QQ:1033553122 测试环境 win10 python 3.5 yield功能简介 简单来说,yield 的作用就是把一个函数变成一个 ge ...
- Python yield 使用浅析【转】
Python yield 使用浅析 IBM developerWorks 中国 : Open source IBM 开源 - IBM Developer 中国 (原 developerWorks 中国 ...
随机推荐
- metasploit用法
1.msfconsole 进入metasploit 2.help connect 查看帮助 3.msfcli -h 查看帮助 4.ms08_067_netapi O 字符命令后加“O”,查看配置 5. ...
- 2、SIP
1.初学者笔记:http://www.cnblogs.com/gnuhpc/archive/2012/01/16/2323637.html 2.SIP头字段解释:http://www.cnblogs. ...
- Mongodb集群搭建过程及常见错误
Replica Sets MongoDB 支持在多个机器中通过异步复制达到故障转移和实现冗余.多机器中同一时刻只 有一台是用于写操作.正是由于这个情况,为 MongoDB 提供了数据一致性的保障.担当 ...
- 【WCF全析(二)】--服务配置部署详解
上篇文章主要讨论了WCF的基本内容,其中包括WCF的术语.创建方法及WCF在开发过程中使用的意义,它不仅能够提供程序之间的通信,而且还能提供程序和数据间的通信,WCF提供了多样化的程序 ...
- 加载AssetBundle方法
先介绍一种常用的加载AssetBundle方法 using UnityEngine; using System.Collections; using System.IO; public class L ...
- Postgresql-xl 调研
Postgresql-xl 调研 来历 这个项目的背后是一家叫做stormDB的公司.整个代买基于postgres-xc.开源版本应该是stormdb的一个分支. In 2010, NTT's Ope ...
- 将Excel数据导入数据库
Excel如下,这页工作表名叫“线路” 数据库表如下 using System; using System.Collections.Generic; using System.Linq; using ...
- CSS继承
不可继承的:display.margin.border.padding.background.height.min-height.max-height.width.min-width.max-widt ...
- etcd api 接口
etcd api接口 基本操作api: https://github.com/coreos/etcd/blob/6acb3d67fbe131b3b2d5d010e00ec80182be4628/Doc ...
- linux chmod 755
chmod是Linux下设置文件权限的命令,后面的数字表示不同用户或用户组的权限. 一般是三个数字: 第一个数字表示文件所有者的权限 第二个数字表示与文件所有者同属一个用户组的其他用户的权限 第三个数 ...