python "yield"(转载)
转载地址:http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/
您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
def fab(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
执行 fab(5),我们可以得到如下输出:
>>> fab(5)
1
1
2
3
5
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
def fab(max):
n, a, b = 0, 0, 1
L = []
while n < max:
L.append(b)
a, b = b, a + b
n = n + 1
return L
可以使用如下方式打印出 fab 函数返回的 List:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代
for i in range(1000): pass
会导致生成一个 1000 个元素的 List,而代码:
for i in xrange(1000): pass
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
class Fab(object): def __init__(self, max):
self.max = max
self.n, self.a, self.b = 0, 0, 1 def __iter__(self):
return self def next(self):
if self.n < self.max:
r = self.b
self.a, self.b = self.b, self.a + self.b
self.n = self.n + 1
return r
raise StopIteration()
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
>>> for n in Fab(5):
... print n
...
1
1
2
3
5
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1 '''
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
>>> for n in fab(5):
... print n
...
1
1
2
3
5
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
>>> f = fab(5)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
3
>>> f.next()
5
>>> f.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
>>> from inspect import isgeneratorfunction
>>> isgeneratorfunction(fab)
True
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
>>> import types
>>> isinstance(fab, types.GeneratorType)
False
>>> isinstance(fab(5), types.GeneratorType)
True
fab 是无法迭代的,而 fab(5) 是可迭代的:
>>> from collections import Iterable
>>> isinstance(fab, Iterable)
False
>>> isinstance(fab(5), Iterable)
True
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
>>> f1 = fab(3)
>>> f2 = fab(5)
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 1
>>> print 'f2:', f2.next()
f2: 1
>>> print 'f1:', f1.next()
f1: 2
>>> print 'f2:', f2.next()
f2: 2
>>> print 'f2:', f2.next()
f2: 3
>>> print 'f2:', f2.next()
f2: 5
return 的作用
在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
另一个例子
另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
python "yield"(转载)的更多相关文章
- 【转】Python yield 使用浅析
转载地址: www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初学 Python 的开发者经 ...
- Python yield与实现
Python yield与实现 yield的功能类似于return,但是不同之处在于它返回的是生成器. 生成器 生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭 ...
- Python yield 使用浅析(转)
Python yield 使用浅析 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到 ...
- python yield from 语法
python yield from 语法 yield语法比较简单, 教程也很多 , yield from的中文讲解很少 , python官网是这样解释的 PEP 380 adds the yield ...
- python yield用法 (tornado, coroutine)
yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行.也就是说,y ...
- python yield 与 yield from转
python yield 与 yield from转 https://blog.csdn.net/chenbin520/article/details/78111399?locationNum=7&a ...
- 转:Python yield 使用浅析 from IBM Developer
评注:没有看懂. 转: https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初 ...
- python yield关键词使用总结
python yield关键词使用总结 by:授客 QQ:1033553122 测试环境 win10 python 3.5 yield功能简介 简单来说,yield 的作用就是把一个函数变成一个 ge ...
- Python yield 使用浅析【转】
Python yield 使用浅析 IBM developerWorks 中国 : Open source IBM 开源 - IBM Developer 中国 (原 developerWorks 中国 ...
随机推荐
- ebs如何将客户化的PL/SQL程序发布到webservice
as:cux_gl_hec_iface_soa_pkg. 1.将package声明部分的内容拷贝出来另存为cux_gl_hec_iface_soa_pkg.pls的文件: 2.将该文件上传到服务器上拥 ...
- IOS 中openGL使用教程1(openGL ES 入门篇 | 搭建openGL环境)
OpenGL版本 iOS系统默认支持OpenGl ES1.0.ES2.0以及ES3.0 3个版本,三者之间并不是简单的版本升级,设计理念甚至完全不同,在开发OpenGL项目前,需要根据业务需求选择合适 ...
- SQL语句的增删查改
一.增:有2种方法 1.使用insert插入单行数据: 语法:insert [into] <表名> [列名] values <列值> 例:insert into Strdent ...
- Openlayers简介
OpenLayers 是由MetaCarta公司开发的,用于WebGIS客户端的 JavaScript包,目前的最高版本是2.5 V,通过BSD License 发行.它实现访问地理空间数据的方法都符 ...
- Spark Streaming资源动态申请和动态控制消费速率剖析
本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再 ...
- ajax通讯之格式详解
前言: ajax的出现,一定程度上改变了js的命运,同时也被广泛使用,而jq的兴起也大大降低了ajax的使用难度.虽然,jq的ajax方法使用起来十分便利,但是大部分开发人员也仅仅只是对其中的几个属性 ...
- 【Python】pymongo使用
官方文档:http://api.mongodb.com/python/current/index.html MongoReplicaSetClient:http://api.mongodb.com/p ...
- 记录在windows7上安装MongoDB
1.首先下载 官网地址 https://www.mongodb.com/download-center#community 选择 Windows Vista 32-bit, without SS ...
- javaWeb学习-----session
一.Session简单介绍 在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据时,服务 ...
- hibernate框架之-查询结果集返回类型
Hibernate支持HQL和SQL的查询,返回结果支持POJO类型或字段/数组的形式. 开发中用Hibernate进行数据库查询,用的是SQL.原来需要查询一个表的几乎所有字段,所以我使用了addE ...