FFT是离散傅立叶变换的快速算法,可以将一个信号变换
到频域。有些信号在时域上是很难看出什么特征的,但是如
果变换到频域之后,就很容易看出特征了。这就是很多信号
分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱
提取出来,这在频谱分析方面也是经常用的。

虽然很多人都知道FFT是什么,可以用来做什么,怎么去
做,但是却不知道FFT之后的结果是什意思、如何决定要使用
多少点来做FFT。

现在圈圈就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。采样
定理告诉我们,采样频率要大于信号频率的两倍,这些我就
不在此罗嗦了。

采样得到的数字信号,就可以做FFT变换了。N个采样点,
经过FFT之后,就可以得到N个点的FFT结果
。为了方便进行FFT
运算,通常N取2的整数次方。

假设采样频率为Fs,信号频率F,采样点数为N。那么FFT
之后结果就是一个为N点的复数。每一个点就对应着一个频率
点。
这个点的模值,就是该频率值下的幅度特性。具体跟原始
信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT
的结果的每个点(除了第一个点直流分量之外)的模值就是A
的N/2倍。而第一个点就是直流分量,它的模值就是直流分量
的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个
点(实际上这个点是不存在的,这里是假设的第N+1个点,也
可以看做是将第一个点分做两半分,另一半移到最后)则表示
采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率
依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。

由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果
采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒
时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时
间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率
分辨力,则必须增加采样点数
也即采样时间。频率分辨率和
采样时间是倒数关系。

  假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是
An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,
就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。

    由于FFT结果的对称性,通常我们只使用前半部分的结果,
即小于采样频率一半的结果。

好了,说了半天,看着公式也晕,下面圈圈以一个实际的
信号来做说明。

假设我们有一个信号,它含有2V的直流分量,频率为50Hz、
相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、
相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

式中cos参数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的采样率对这个信号进行采样,总共采样256点。
按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个
点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号
有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、
第76个点上出现峰值,其它各点应该接近0。实际情况如何呢?
我们来看看FFT的结果的模值如图所示。

图1 FFT结果
    从图中我们可以看到,在第1点、第51点、和第76点附近有
比较大的值。我们分别将这三个点附近的数据拿上来细看:
1点: 512+0i
2点: -2.6195E-14 - 1.4162E-13i 
3点: -2.8586E-14 - 1.1898E-13i

50点:-6.2076E-13 - 2.1713E-12i
51点:332.55 - 192i
52点:-1.6707E-12 - 1.5241E-12i

75点:-2.2199E-13 -1.0076E-12i
76点:3.4315E-12 + 192i
77点:-3.0263E-14 +7.5609E-13i
   
    很明显,1点、51点、76点的值都比较大,它附近的点值
都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。分别计算这三个点的模值,
结果如下:
1点: 512
51点:384
76点:192
    按照公式,可以计算出直流分量为:512/N=512/256=2;
50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的
幅度为192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来
的幅度是正确的。
    然后再来计算相位信息。直流信号没有相位可言,不用管
它。先计算50Hz信号的相位,atan2(-192, 332.55)=-0.5236,
结果是弧度,换算为角度就是180*(-0.5236)/pi=-30.0001。再
计算75Hz信号的相位,atan2(192, 3.4315E-12)=1.5708弧度,
换算成角度就是180*1.5708/pi=90.0002。可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达
式了,它就是我们开始提供的信号。

总结:假设采样频率为Fs,采样点数为N,做FFT之后,某
一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值
除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以
N)
该点的相位即是对应该频率下的信号的相位。相位的计算
可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角
度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒
的信号,并做FFT。
要提高频率分辨率,就需要增加采样点数,
这在一些实际的应用中是不现实的,需要在较短的时间内完成
分析。解决这个问题的方法有频率细分法,比较简单的方法是
采样比较短时间的信号,然后在后面补充一定数量的0,使其长度
达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。

[附录:本测试数据使用的matlab程序]
close all; %先关闭所有图片
Adc=2;  %直流分量幅度
A1=3;   %频率F1信号的幅度
A2=1.5; %频率F2信号的幅度
F1=50;  %信号1频率(Hz)
F2=75;  %信号2频率(Hz)
Fs=256; %采样频率(Hz)
P1=-30; %信号1相位(度)
P2=90;  %信号相位(度)
N=256;  %采样点数
t=[0:1/Fs:N/Fs]; %采样时刻

%信号
S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);
%显示原始信号
plot(S);
title('原始信号');

figure;
Y = fft(S,N); %做FFT变换
Ayy = (abs(Y)); %取模
plot(Ayy(1:N)); %显示原始的FFT模值结果
title('FFT 模值');

figure;
Ayy=Ayy/(N/2);   %换算成实际的幅度
Ayy(1)=Ayy(1)/2;
F=([1:N]-1)*Fs/N; %换算成实际的频率值
plot(F(1:N/2),Ayy(1:N/2));   %显示换算后的FFT模值结果
title('幅度-频率曲线图');

figure;
Pyy=[1:N/2];
for i="1:N/2"
 Pyy(i)=phase(Y(i)); %计算相位
 Pyy(i)=Pyy(i)*180/pi; %换算为角度
end;
plot(F(1:N/2),Pyy(1:N/2));   %显示相位图
title('相位-频率曲线图');

数字信号处理--FFT的更多相关文章

  1. 数字信号处理--FFT与蝶形算法

    在数字信号处理中常常需要用到离散傅立叶变换(DFT),以获取信号的频域特征.尽管传统的DFT算法能够获取信号频域特征,但是算法计算量大,耗时长,不利于计算机实时对信号进行处理.因此至DFT被发现以来, ...

  2. 数字信号处理专题(3)——FFT运算初探

    一.前言 FFT运算是目前最常用的信号频谱分析算法.在本科学习数字信号处理这门课时一直在想:学这些东西有啥用?公式推来推去的,有实用价值么?到了研究生后期才知道,广义上的数字信号处理无处不在:手机等各 ...

  3. FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...

  4. 《数字信号处理》课程实验1 – FFT的实现

    一.按时间抽选的基-2 FFT实现原理 观察DIT(基2)FFT的流图(N点,N为2的幂次),可以总结出如下规律: (1)共有\(L=\log_2⁡N\)级蝶形运算: (2)输入倒位序,输出自然顺序: ...

  5. 数字信号处理与音频处理(使用Audition)

    前一阵子由于考博学习须要,看了<数字信号处理>,之前一直不清除这门课的理论在哪里应用比較广泛. 这次正巧用Audition处理了一段音频,猛然发现<数字信号处理>这门课还是很实 ...

  6. FPGA与数字信号处理

    过去十几年,通信与多媒体技术的快速发展极大地扩展了数字信号处理(DSP)的应用范围.眼下正在发生的是,以更高的速度和更低的成本实现越来越复杂的算法,这是针对高级信息服更高带宽以及增强的多媒体处理能力等 ...

  7. 现代数字信号处理——AR模型

    1. AR模型概念观       AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推, ...

  8. 几幅图片弄清DFT、DTFT、DFS的关系 数字信号处理

    原址:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...

  9. 《数字信号处理》课程实验2 – FIR数字滤波器设计

    一.FIR数字滤波器设计原理  本实验采用窗函数法设计FIR数字低通滤波器.我们希望设计的滤波器系统函数如下: \(H_{d}\left( e^{jw} \right) = \left\{ \begi ...

随机推荐

  1. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  2. U盘安装CentOS 7.0

    U盘安装CentOS 7.0 由于学习需要centos环境,so上网下载centos安装镜像,发现版本已经到7.0了,(╮(╯▽╰)╭,上次折腾还是6.4的版本呢,)花了一点时间下载下来按照装6.4的 ...

  3. nyoj 708 ones 动态规划

    http://acm.nyist.net/JudgeOnline/problem.php?pid=708 状态转移方程的思路:对于一个数N,可以是N - 1的状态+1 得到,另外,也可以是(n / 2 ...

  4. pacman -Syu : key could not be looked up remotely.

    # sudo pacman -Syu...error: key "5F702428F70E0903" could not be looked up remotelyerror: r ...

  5. winserver2008 R2 64位 企业版 , IIS 配置运行 asp+access 网站

    新建网站,程序池由DefaultAppPool 改为 Classic .NET AppPool, 并在 高级设置中,把启用 32位应用程序  设为 true 对 access 所在目录新加 every ...

  6. CentOS 7虚拟机下模拟实现nginx负载均衡

    以CentOS 7为例,我们模拟实现nginx来处理静态资源,apache来处理php 1.首先我们来安装nginx # wget  http://nginx.org/packages/centos/ ...

  7. Eclipse导入Tomcat源码(转)

    想要研究下Tomcat的体系结构或者源码,最好将Tomcat的源码导入到ide中,编写实例进行代码跟踪(debug). 这里参考了网上一些资料,将自己操作过程记个流水账. 准备: 1.Tomcat源码 ...

  8. oracle安装不容易啊

    oracle 配置方面,电脑端使用的是ORALE 10G 64位,PLSQL DEVELOPER使用32位,ORACLE CLIENT使用11.5版本.之前一直因为ORACLE 使用32位,导致在电脑 ...

  9. AX7: Install a deployable package

    Table of Contents Introduction Key concepts Collect topology configuration data Generate a runbook f ...

  10. PIC32MZ tutorial -- UART Communication

    At this moment, I accomplish the interface of UART communication for PIC32MZ EC Starter Kit. This in ...