原题链接

Problem Description
The soil is cracking up because of the drought and the rabbit kingdom is facing a serious famine. The RRC(Rabbit Red Cross) organizes the distribution of relief grain in the disaster area.

We can regard the kingdom as a tree with n nodes and each node stands for a village. The distribution of the relief grain is divided into m phases. For each phases, the RRC will choose a path of the tree and distribute some relief grain of a certain type for every village located in the path.

There are many types of grains. The RRC wants to figure out which type of grain is distributed the most times in every village.

 
Input
The input consists of at most 25 test cases.

For each test case, the first line contains two integer n and m indicating the number of villages and the number of phases.

The following n-1 lines describe the tree. Each of the lines contains two integer x and y indicating that there is an edge between the x-th village and the y-th village.
  
The following m lines describe the phases. Each line contains three integer x, y and z indicating that there is a distribution in the path from x-th village to y-th village with grain of type z. (1 <= n <= 100000, 0 <= m <= 100000, 1 <= x <= n, 1 <= y <= n, 1 <= z <= 100000)

The input ends by n = 0 and m = 0.

 
Output
For each test case, output n integers. The i-th integer denotes the type that is distributed the most times in the i-th village. If there are multiple types which have the same times of distribution, output the minimal one. If there is no relief grain in a village, just output 0.
 
Sample Input
2 4
1 2
1 1 1
1 2 2
2 2 2
2 2 1
5 3
1 2
3 1
3 4
5 3
2 3 3
1 5 2
3 3 3
0 0
 
Sample Output
1
2
2
3
3
0
2

Hint

For the first test case, the relief grain in the 1st village is {1, 2}, and the relief grain in the 2nd village is {1, 2, 2}.

 
Source
 
题意:有n个村庄面临饥荒,这些村庄由n-1条路连接,构成一棵树,现在政府发放粮食,这些粮食有不同的类型,粮食发放分为m个阶段,每个阶段选择一条路径发放一种类型的粮食,输出每个点发放哪种粮食最多;
 
思路:树链剖分将路径变为线性的,每次对一条路径发放粮食可以转化为在一段连续区间的开始位置加上1,在结束的下一位减1;

方法就是打标记。线段树维护的是颜色。也就是维护的是[a,b]就是维护a颜色到b颜色某种颜色出现的最多次数。

假设我们处理的是序列而不是树吧。比如我们要把区间[x,y]图成a颜色.那么我们就在x出加个标记a。在y+1就标记-a。

多个标记用邻接表连起来就行了。然后从序列的最左端处理到最右端先把所有标记更新到线段树里。a则a颜色+1。

-a则在线段树将a颜色-1.然后再询问线段树里出现最多的次数就是序列该位置的次数最多的颜色了。相当于递推的思想吧。知道了x位置的颜色线段树.x+1位置的颜色线段树          无非是多了一些颜色或者少了某些颜色。多了减掉。少了的加上就是自己这个位置上的了。这样做之所以高效的原因是标记的是区间的端点而不是区间类的每一个元素。总的          时间复杂度m*log(n)*log(c)。m为询问数。n为结点数。c为颜色种数。

我的代码如下:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#define N 100005
#define M 200005
using namespace std;
int n,q,cnt,sz;
int fa[N][],deep[N],size[N],head[N];
int pos[N],belong[N];
bool vis[N];
int mv[],leaf[],h[M]; struct data
{
int to,next;
} e[M],w[M*]; void insert(int u,int v)
{
e[++cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
e[++cnt].to=u;
e[cnt].next=head[v];
head[v]=cnt;
} void init()
{
cnt=;
sz=;
memset(deep,,sizeof(deep));
memset(head,,sizeof(head));
memset(vis,,sizeof(vis));
memset(h,,sizeof(h));
memset(mv,,sizeof(mv));
for(int i=; i<n; i++)
{
int x,y;
scanf("%d%d",&x,&y);
insert(x,y);
}
} void dfs1(int x)
{
size[x]=;
vis[x]=;
for(int i=; i<=; i++)
{
if(deep[x]<(<<i))break;
fa[x][i]=fa[fa[x][i-]][i-];//倍增处理祖先信息
}
for(int i=head[x]; i; i=e[i].next)
{
if(vis[e[i].to])continue;
deep[e[i].to]=deep[x]+;
fa[e[i].to][]=x;
dfs1(e[i].to);
size[x]+=size[e[i].to];
}
} void dfs2(int x,int chain)
{
int k=;
sz++;
pos[x]=sz;//分配x结点在线段树中的编号
belong[x]=chain;
for(int i=head[x]; i; i=e[i].next)
if(deep[e[i].to]>deep[x]&&size[e[i].to]>size[k])
k=e[i].to;//选择子树最大的儿子继承重链
if(k==)return;
dfs2(k,chain);
for(int i=head[x]; i; i=e[i].next)
if(deep[e[i].to]>deep[x]&&k!=e[i].to)
dfs2(e[i].to,e[i].to);//其余儿子新开重链
} void build(int rt,int l,int r)//建线段树
{
if(l==r)
{
leaf[l]=rt;
return;
}
int mid=(l+r)>>;
build(rt<<,l,mid);
build(rt<<|,mid+,r);
} void update(int rt,int c)
{
if(c>) c=;
else c=-;
mv[rt]+=c;
while(rt>)
{
rt>>=;
mv[rt]=max(mv[rt<<],mv[rt<<|]);
}
} int qu(int L,int R,int rt)
{
int ls,rs,mid;
if(mv[rt]==)
return ;
while(L<R)
{
ls=rt<<,rs=ls|,mid=(L+R)>>;
if(mv[rs]>mv[ls])
L=mid+,rt=rs;
else
R=mid,rt=ls;
}
return L;
} void adde(int x,int d)
{
w[++cnt].to=d;
w[cnt].next=h[x];
h[x]=cnt;
} void uppath(int u,int v,int d)
{
int f1=belong[u],f2=belong[v];
while(f1!=f2)
{
if(deep[f1]<deep[f2])
swap(f1,f2),swap(u,v);
adde(pos[f1],d);
adde(pos[u]+,-d);
u=fa[f1][],f1=belong[u];
}
if(deep[u]>deep[v])
swap(u,v);
adde(pos[u],d);
adde(pos[v]+,-d);
} void solve()
{
build(,,);
cnt=;
for(int i=; i<=q; i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
uppath(x,y,z);
}
int ans[N];
for(int i=;i<=n;i++)
{
for(int j=h[i];j;j=w[j].next)
{
update(leaf[abs(w[j].to)],w[j].to);
}
ans[i]=qu(,,);
}
for(int i=;i<=n;i++)
{
printf("%d\n",ans[pos[i]]);
}
} int main()
{
while(scanf("%d%d",&n,&q)&&(n+q))
{
init();
dfs1();
dfs2(,);
solve();
}
return ;
}

高手的代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <vector>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=;
int fa[maxn],siz[maxn],son[maxn],w[maxn],p[maxn],dep[maxn],fp[maxn],Rank[maxn],ans[maxn];
//fa为父节点,siz为子节点中siz最大的,dep为深度,son为重儿子,w表示在线段树中的位置
int num[maxn<<],ppp[maxn<<];
int tree_id,n;
vector<int>G[maxn];
void dfs1(int u,int ff,int deep){
son[u]=;fa[u]=ff;siz[u]=;dep[u]=deep;
for(unsigned int i=;i<G[u].size();i++){
int v=G[u][i];
if(v==ff) continue;
dfs1(v,u,deep+);
siz[u]+=siz[v];
if(siz[v]>siz[son[u]]) son[u]=v;
}
}
void dfs2(int u,int ff){
w[u]=++tree_id;p[u]=ff;Rank[w[u]]=u;
if(son[u]) dfs2(son[u],ff);
else return ;
for(unsigned int i=;i<G[u].size();i++){
int v=G[u][i];
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
void pushup(int node){
if(num[node<<]>=num[node<<|]){
num[node]=num[node<<];ppp[node]=ppp[node<<];
}else{
num[node]=num[node<<|];ppp[node]=ppp[node<<|]; }
}
void buildtree(int le,int ri,int node){
if(le==ri){
num[node]=;ppp[node]=le;
return ;
}
int t=(le+ri)>>;
buildtree(le,t,node<<);
buildtree(t+,ri,node<<|);
pushup(node);
}
void update(int pos,int val,int le,int ri,int node){
if(le==ri){
num[node]+=val;
return ;
}
int t=(le+ri)>>;
if(pos<=t) update(pos,val,le,t,node<<);
else update(pos,val,t+,ri,node<<|);
pushup(node);
}
struct nnnn{
int u,v,z;
nnnn(int a,int b,int c){u=a;v=b;z=c;}
};
vector<nnnn>GG;
vector<int>GGG[maxn];
void getsum(int u,int v,int z){
int f1=p[u],f2=p[v];
while(f1!=f2){
if(dep[f1]<dep[f2]){
swap(f1,f2);
swap(u,v);
}
GG.push_back(nnnn(w[f1],w[u],z));
u=fa[f1];f1=p[u];
}
if(dep[u]>dep[v]) swap(u,v);
GG.push_back(nnnn(w[u],w[v],z));
}
int main(){
int u,v,q,op,z;
while(scanf("%d%d",&n,&q)!=-){
if(n==&&q==) break;
for(int i=;i<maxn;i++) G[i].clear(),GGG[i].clear();
GG.clear();
memset(son,,sizeof(son));tree_id=;
for(int i=;i<n-;i++){
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs1(,,);
dfs2(,);
int max1=;
for(int i=;i<=q;i++){
scanf("%d%d%d",&u,&v,&z);
max1=max(max1,z);
getsum(u,v,z);
}
if(q==){
for(int i=;i<=n;i++) printf("0\n");
continue;
}
buildtree(,max1,);
for(int i=;i<GG.size();i++){
nnnn ne=GG[i];
GGG[ne.u].push_back(ne.z);
GGG[ne.v+].push_back(-ne.z);
}
for(int i=;i<=n;i++){
for(int j=;j<GGG[i].size();j++){
int ttt=GGG[i][j];
if(ttt<) update(-ttt,-,,max1,);
else update(ttt,,,max1,);
}
if(num[]==) ans[Rank[i]]=;
else ans[Rank[i]]=ppp[];
}
for(int i=;i<=n;i++) printf("%d\n",ans[i]);
}
return ;
}

2014 ICPC---Relief grain(树链剖分)的更多相关文章

  1. hdu 5029 Relief grain(树链剖分+线段树)

    题目链接:hdu 5029 Relief grain 题目大意:给定一棵树,然后每次操作在uv路径上为每一个节点加入一个数w,最后输出每一个节点个数最多的那个数. 解题思路:由于是在树的路径上做操作, ...

  2. HDU 5029 Relief grain 树链剖分打标记 线段树区间最大值

    Relief grain Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  3. HDU 5029 Relief grain --树链剖分第一题

    题意:给一棵树,每次给两个节点间的所有节点发放第k种东西,问最后每个节点拿到的最多的东西是哪种. 解法:解决树的路径上的修改查询问题一般用到的是树链剖分+线段树,以前不会写,后来学了一下树链剖分,感觉 ...

  4. hdu_5029_relief grain(树链剖分)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5029 题意:给你一个树,然后给你两点,将这两点之间的点涂上颜色,问涂色最多的那个颜色是什么,如果数量相 ...

  5. HDU5029--Relief grain (树链剖分+线段树 )

    题意:n个点构成的无根树,m次操作, 对于操作 x y z, 表示 x 到 y 路径上的 每个点 加一个 z 数字,可重复加.最后输出每个点 加的次数最多的那个数字,如果没有输出0. 赤裸裸的树链剖分 ...

  6. HDU 4897 Little Devil I(树链剖分)(2014 Multi-University Training Contest 4)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4897 Problem Description There is an old country and ...

  7. 2019 icpc南昌全国邀请赛-网络选拔赛J题 树链剖分+离线询问

    链接:https://nanti.jisuanke.com/t/38229 题意: 给一棵树,多次查询,每次查询两点之间权值<=k的边个数 题解: 离线询问,树链剖分后bit维护有贡献的位置即可 ...

  8. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  9. 树链剖分+线段树+离线(广州网选赛第八题hdu5029)

    http://acm.hdu.edu.cn/showproblem.php?pid=5029 Relief grain Time Limit: 10000/5000 MS (Java/Others)  ...

随机推荐

  1. MVVM架构~knockoutjs系列之从Knockout.Validation.js源码中学习它的用法

    返回目录 说在前 有时,我们在使用一个插件时,在网上即找不到它的相关API,这时,我们会很抓狂的,与其抓狂,还不如踏下心来,分析一下它的源码,事实上,对于JS这种开发语言来说,它开发的插件的使用方法都 ...

  2. js 图片轮播(一)

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  3. js获取当前时间显示在页面上

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  4. ASP.NET MVC 拦截器IResultFilter

    在ASP.NET MVC中,有一个Result拦截器,实现ResultFilter需要继承一个类(System.Web.Mvc.FilterAttribute)和实现一个类(System.Web.Mv ...

  5. python中常用的函数与库一

    1, collections.deque 在python里如果我们用列表作为队列使用也是可以的,只是当从队尾删除或者增加元素的时候是很快的,但是从队首删除或者增加元素则要慢得多,这是因为在队首进行操作 ...

  6. javaweb回顾第九篇EL表达式

    前言:关于EL表示式开发用的非常多,现在我们回顾一下关于如果去操作EL表达式 1:EL表达式语法 所有EL表达式都是由{开始}结束,表达式中用.和[]操作符来访问数据比喻${user.userName ...

  7. 一次SSIS Package的调试经历

    SSIS Package的调试有时是一个非常艰难的过程,由于SSIS 编译器给出的错误信息,可能并不完善,需要程序员根据错误信息抽丝拨茧,寻找错误的根源,进而解决问题. 第一部分:SSIS提供的调试工 ...

  8. java中Cookie中文字符乱码问题

    如果Cookie中的Value 中有中文字符出现,在加入Cookie的时候,会出现下面的错误: java.lang.IllegalArgumentException: Control characte ...

  9. MySQL性能优化的最佳21条经验

    今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数据 ...

  10. spring源码分析之spring-core-io

    1. 看一下源码整体结构: 抓住主要点Resource.ResourceLoader和ResourceEditor 其中Resource作用 Interface for a resource desc ...