[转]Mathematical Induction --数学归纳法1
Mathematical Induction
Mathematical Induction is a special way of proving things. It has only 2 steps:
- Step 1. Show it is true for the first one
- Step 2. Show that if any one is true then the next one is true
Then all are true

Have you heard of the "Domino Effect"?
- Step 1. The first domino falls
- Step 2. When any domino falls, the next domino falls
So ... all dominos will fall!
That is how Mathematical Induction works.
In the world of numbers we say:
- Step 1. Show it is true for n=1
- Step 2. Show that if n=k is true then n=k+1 is also true
How to Do it
Step 1 is usually easy, we just have to prove it is true for n=1
Step 2 is best done this way:
- Assume it is true for n=k
- Prove it is true for n=k+1 (we can use the n=k case as a fact.)
Step 2 can often be tricky ... because we may need to use imaginative tricks to make it work!
Like in this example:
Example: 3n−1 is a multiple of 2
Is that true? Let us find out.
1. Show it is true for n=1
31−1 = 3−1 = 2
Yes 2 is a multiple of 2. That was easy.
31−1 is true
2. Assume it is true for n=k
3k−1 is true
(Hang on! How do we know that? We don't!
It is an assumption ... that we treat
as a fact for the rest of this example)
Now, prove that 3k+1−1 is a multiple of 2

3k+1 is also 3×3k
And then split 3× into 2× and 1×
And each of these are multiples of 2
Because:
- 2×3k is a multiple of 2 (we are multiplying by 2)
- 3k−1 is true (we said that in the assumption above)
So:
3k+1−1 is true
DONE!
Did you see how we used the 3k−1 case as being true, even though we had not proved it? That is OK, because we are relying on the Domino Effect ...
... we are asking if any domino falls will the next one fall?
So we take it as a fact (temporarily) that the "n=k" domino falls (i.e. 3k−1 is true), and see if that means the "n=k+1" domino will also fall.
Tricks
I said before that we often need to use imaginative tricks.
A common trick is to rewrite the n=k+1 case into 2 parts:
- one part being the n=k case (which is assumed to be true)
- the other part can then be checked to see if it is also true
We did that in the example above, and here is another one:
Example: Adding up Odd Numbers
1 + 3 + 5 + ... + (2n−1) = n2
1. Show it is true for n=1
1 = 12 is True
2. Assume it is true for n=k
1 + 3 + 5 + ... + (2k−1) = k2 is True
(An assumption!)
Now, prove it is true for "k+1"
1 + 3 + 5 + ... + (2k−1) + (2(k+1)−1) = (k+1)2 ?
We know that 1 + 3 + 5 + ... + (2k−1) = k2 (the assumption above), so we can do a replacement for all but the last term:
k2 + (2(k+1)−1) = (k+1)2
Now expand all terms:
k2 + 2k + 2 − 1 = k2 + 2k+1
And simplify:
k2 + 2k + 1 = k2 + 2k + 1
They are the same! So it is true.
So:
1 + 3 + 5 + ... + (2(k+1)−1) = (k+1)2 is True
DONE!
So there you have it!
Copyright © 2014 MathsIsFun.com
[转]Mathematical Induction --数学归纳法1的更多相关文章
- [中英双语] 数学缩写列表 (List of mathematical abbreviations)
List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...
- Lecture notes of Mathematical analysis
Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...
- Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers
Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...
- c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode
#include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...
- 【具体数学--读书笔记】1.1 The Power of Hanoi
这一节借助汉诺塔问题引入了"Reccurent Problems". (Reccurence, 在这里解释为“the solution to each problem depend ...
- Python算法:推导、递归和规约
Python算法:推导.递归和规约 注:本节中我给定下面三个重要词汇的中文翻译分别是:Induction(推导).Recursion(递归)和Reduction(规约) 本节主要介绍算法设计的三个核心 ...
- 蓝眼睛与红眼睛(The blue-eyed islanders puzzle)
澳大利亚的华裔数学神童陶哲轩曾在网上贴出来一个问题 The blue-eyed islanders puzzle 让大家思考,逗大家玩儿. 说一个岛上有100个人,其中有5个红眼睛,95个蓝眼睛.这个 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
随机推荐
- 安装phpredisadmin linux nginx服务器下
1.下载phpRedisAdmin:git clone https://github.com/ErikDubbelboer/phpRedisAdmin.git 2.cd phpRedisAdmin ...
- 实验一 DOS命令解释程序的编写
一.目的和要求 1. 实验目的 (1)认识DOS: (2)掌握命令解释程序的原理: (3)掌握简单的DOS调用方法: (4)掌握C语言编程初步. 2.实验要求 编写类似于DOS,UNIX的命令行解释程 ...
- Yii2 rules 添加时间比较功能
php比较类文件:yiisoft\yii2\validators\CompareValidator.php JS比较类文件: yiisoft\yii2\assets\yii.validation.js ...
- 怎么将Android studio 的“ build:gradle改低一点”
参考来源:http://bbs.qcloud.com/thread-17193-1-1.html Error:Execution failed for task ':xxxx:compileDebug ...
- 同表复制修改日期的procedure
同表复制数据,让其日期增加 算出总共的天数,用group by 分类后的. space 提前求出第一块数据的总和 sum = select count(*) from tbl_event; 固定操作第 ...
- ES6模块加载
两种加载方式 加载方式 规范 命令 特点 运行时加载 CommonJS/AMD require 社区方案,提供了服务器/浏览器的模块加载方案 非语言层面的标准 只能在运行时确定模块的依赖关系及输入/输 ...
- 初学js
接触时感觉跟前面写网页的差距和大,与c语言很相似.主要学的有: 1.引入js的三种方法:外联,内联,嵌套 2.标识符:第一个字符可以是任意Unicode字母,以及美元符号($)和下划线(_). - 第 ...
- 求最长回文子串:Manacher算法
主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...
- STM32——CAN通讯实现
CAN通讯的实现步骤: 1.CAN初始化,其中包括:a.配置CAN时钟,配置IO: b.使能CAN中断向量: c.CAN硬件寄存器配置初始化: d.过滤器初始化: e.打开CAN中断. 2.CAN发送 ...
- 关于编译报错“dereferencing pointer to incomplete type...
今天同事问了我一个问题,他make的时候报错,“第201行:dereferencing pointer to incomplete type”,我随即查阅了很多资料,也没看出个所以然.最后问题得到了解 ...