Mathematical Induction

Mathematical Induction is a special way of proving things. It has only 2 steps:

  • Step 1. Show it is true for the first one
  • Step 2. Show that if any one is true then the next one is true

Then all are true

Have you heard of the "Domino Effect"?

  • Step 1. The first domino falls
  • Step 2. When any domino falls, the next domino falls

So ... all dominos will fall!

That is how Mathematical Induction works.

In the world of numbers we say:

  • Step 1. Show it is true for n=1
  • Step 2. Show that if n=k is true then n=k+1 is also true

How to Do it

Step 1 is usually easy, we just have to prove it is true for n=1

Step 2 is best done this way:

  • Assume it is true for n=k
  • Prove it is true for n=k+1 (we can use the n=k case as a fact.)

Step 2 can often be tricky ... because we may need to use imaginative tricks to make it work!

Like in this example:

Example: 3n−1 is a multiple of 2

Is that true? Let us find out.

1. Show it is true for n=1

31−1 = 3−1 = 2

Yes 2 is a multiple of 2. That was easy.

31−1 is true

2. Assume it is true for n=k

3k−1 is true

(Hang on! How do we know that? We don't!
It is an assumption ... that we treat
as a fact for the rest of this example)

Now, prove that 3k+1−1 is a multiple of 2

3k+1 is also 3×3k

And then split into and

And each of these are multiples of 2

Because:

  • 2×3k is a multiple of 2 (we are multiplying by 2)
  • 3k−1 is true (we said that in the assumption above)

So:

3k+1−1 is true

DONE!

Did you see how we used the 3k−1 case as being true, even though we had not proved it? That is OK, because we are relying on the Domino Effect ...

... we are asking if any domino falls will the next one fall?

So we take it as a fact (temporarily) that the "n=k" domino falls (i.e. 3k−1 is true), and see if that means the "n=k+1" domino will also fall.

Tricks

I said before that we often need to use imaginative tricks.

A common trick is to rewrite the n=k+1 case into 2 parts:

  • one part being the n=k case (which is assumed to be true)
  • the other part can then be checked to see if it is also true

We did that in the example above, and here is another one:

Example: Adding up Odd Numbers

1 + 3 + 5 + ... + (2n−1) = n2

1. Show it is true for n=1

1 = 12 is True

2. Assume it is true for n=k

1 + 3 + 5 + ... + (2k−1) = k2 is True
(An assumption!)

Now, prove it is true for "k+1"

1 + 3 + 5 + ... + (2k−1) + (2(k+1)−1) = (k+1)2   ?

We know that 1 + 3 + 5 + ... + (2k−1) = k2 (the assumption above), so we can do a replacement for all but the last term:

k2 + (2(k+1)−1) = (k+1)2

Now expand all terms:

k2 + 2k + 2 − 1 = k2 + 2k+1

And simplify:

k2 + 2k + 1 = k2 + 2k + 1

They are the same! So it is true.

So:

1 + 3 + 5 + ... + (2(k+1)−1) = (k+1)2 is True

DONE!

So there you have it!

 

 
Search :: Index :: About :: Contact :: Contribute :: Cite This Page :: Privacy

Copyright © 2014 MathsIsFun.com

 
 

[转]Mathematical Induction --数学归纳法1的更多相关文章

  1. [中英双语] 数学缩写列表 (List of mathematical abbreviations)

    List of mathematical abbreviations From Wikipedia, the free encyclopedia 数学缩写列表 维基百科,自由的百科全书 This ar ...

  2. Lecture notes of Mathematical analysis

    Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...

  3. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  4. c语言求平面上2个坐标点的直线距离、求俩坐标直线距离作为半径的圆的面积、递归、菲波那次数列、explode

    #include <stdio.h> #include <math.h> #include <string.h> char explode( char * str ...

  5. 【具体数学--读书笔记】1.1 The Power of Hanoi

    这一节借助汉诺塔问题引入了"Reccurent Problems". (Reccurence, 在这里解释为“the solution to each problem depend ...

  6. Python算法:推导、递归和规约

    Python算法:推导.递归和规约 注:本节中我给定下面三个重要词汇的中文翻译分别是:Induction(推导).Recursion(递归)和Reduction(规约) 本节主要介绍算法设计的三个核心 ...

  7. 蓝眼睛与红眼睛(The blue-eyed islanders puzzle)

    澳大利亚的华裔数学神童陶哲轩曾在网上贴出来一个问题 The blue-eyed islanders puzzle 让大家思考,逗大家玩儿. 说一个岛上有100个人,其中有5个红眼睛,95个蓝眼睛.这个 ...

  8. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. guava学习--Objects

    转载:https://my.oschina.net/realfighter/blog/349821 Java中的Object类是所有Java类的超类(也就是祖先),所有对象都实现Object类中的方法 ...

  2. PDF 补丁丁 0.5.0.2731 发布(增加去除页面表单和链接水印功能)

    新的版本增加了简单的删除表单和链接批注的功能,使用该功能可去掉某些软件打上的水印. 在 PDF 文档选项中选中“清除页面所有表单”和“清除页面所有链接批注”项后,程序将会删除页面的表单和链接批注. 效 ...

  3. Hammer.js

    一.前言 移动端框架当前还处在初级阶段,但相对于移动端的应用来说已经有很长时间了.虽然暂时还没有PC端开发的需求量大,但移动端的Web必然是一种趋势,在接触移动端脚本的过程中,最开始想到的是juqer ...

  4. 查看cpu

    使用系统命令top即可看到如下类似信息: Cpu(s):  0.0%us,  0.5%sy,  0.0%ni, 99.5%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st ...

  5. bzoj 3211: 花神游历各国

    #include<cstdio> #include<cmath> #include<iostream> #define M 100006 using namespa ...

  6. HDU 4944 FSF’s game(2014 Multi-University Training Contest 7)

    思路:  ans[n]=  ans[n-1] + { (n,1),(n,2).....(n,n)}  现在任务 是 计算  { (n,1),(n,2).....(n,n)}(k=n的任意因子) 很明显 ...

  7. jQuery LigerUI V1.2.2 (包括API和全部源码) 发布

    前言 这次版本主要对树进行了加载性能上面的优化,并解决了部分兼容性的问题,添加了几个功能点. 欢迎使用反馈. 相关链接 API:         http://api.ligerui.com/ 演示地 ...

  8. spring -java.lang.NoClassDefFoundError: javax/mail/MessagingException

    今天遇到这个问题,网上找了半天,终于解决了,最后记录一下. spring集成了mail,于是就测试了下,结果报了java.lang.NoClassDefFoundError: javax/mail/M ...

  9. codeblocks个性化配置

    1.general setting设置默认字体大小设置控制台字体大小:"Settings -> Environment -> View -> Message logs' f ...

  10. Add Two Numbers (c#)

    You are given two linked lists representing two non-negative numbers. The digits are stored in rever ...