bzoj 1010 (单调决策优化)
能够非常好的证明单调决策性质。用 记sum[i]=sigma(C[1],C[2].....C[k]);f[i]=sum[i]+i; c=l-1;
有转移dp[i]=min( dp[j]+(f[i]-f[jk]-c)^2); 假死 有2个决策j<k, 对于i点。k决策更优秀 于是能够得到
dp[k]+(f[i]-f[k]-c)^2<dp[j]+(f[i]-f[j]-c)^2;
对于一个x>i 如果f[x]=f[i]+v;对于决策j,k。若决策k优于决策j ,必定
dp[k]+(f[x]-f[k]-c)^2<dp[j]+(f[x]-f[j]-c)^2;
于是dp[k]+(f[i]+v-f[k]-c)^2<dp[j]+(f[i]-v-f[j]-c)^2;
仅仅要2v(f[i]-f[k]-c)+v^2<2v(f[i]-f[j]-c)
优于v>0 f[k]>f[j] 这是必定成立的 ,所以能够非常好的证明单调决策性质。然后能够依据《1D/1D动态规划初步》论文的写法做。
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <string>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int inf = 0x3fffffff;
const int mmax = 500010;
LL C[mmax];
LL dp[mmax];
LL sum[mmax];
int n;
LL L;
struct node
{
int l,r;
int d;
node() {}
node(int l,int r,int d):l(l),r(r),d(d) {}
void print()
{
printf("%d %d %d\n",l,r,d);
}
}Q[mmax];
LL sqr(LL x)
{
return x*x;
}
void up(int i,int j)
{
dp[i]=dp[j]+sqr(sum[i]-sum[j]+i-j-1-L);
}
bool ok(int i,int j,int d)
{
return dp[d]+sqr(sum[i]-sum[d]+i-d-1-L)>=dp[j]+sqr(sum[i]-sum[j]+i-j-1-L);
}
int find(int l,int r,int j,int d)
{
int mid;
r++;
while(l<r)
{
mid=(l+r)>>1;
if(ok(mid,j,d))
r=mid;
else
l=mid+1;
}
return r;
}
void make()
{
int head=0,tail=0;
dp[0]=0;
Q[tail++]=node(0,n,0);
for(int i=1;i<=n;i++)
{
while(Q[head].r<i)
head++;
if(Q[head].l<i)
Q[head].l=i;
up(i,Q[head].d);
int tmp=0;
while(head<tail)
{
if(ok(Q[tail-1].l,i,Q[tail-1].d))
{
tmp=Q[tail-1].l;
tail--;
}
else
{
tmp=find(Q[tail-1].l,Q[tail-1].r,i,Q[tail-1].d);
Q[tail-1].r=tmp-1;
break;
}
}
if(tmp<=n)
Q[tail++]=node(tmp,n,i);
}
}
int main()
{ while(cin>>n>>L)
{
sum[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&C[i]);
sum[i]=sum[i-1]+C[i];
}
make();
printf("%lld\n",dp[n]);
}
return 0;
}
bzoj 1010 (单调决策优化)的更多相关文章
- bzoj 3126 单调队列优化dp
能转移的最左是其左边完整区间的最右左端点,最右是能覆盖它的最左左端点-1 #pragma GCC optimize ("O3") #include<cstdio> #i ...
- BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...
- 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9330 Solved: 3739 Descriptio ...
- BZOJ 1499 [NOI2005] 瑰丽华尔兹 | 单调队列优化DP
BZOJ 1499 瑰丽华尔兹 | 单调队列优化DP 题意 有一块\(n \times m\)的矩形地面,上面有一些障碍(用'#'表示),其余的是空地(用'.'表示).每时每刻,地面都会向某个方向倾斜 ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ 2806: [Ctsc2012]Cheat [广义后缀自动机 单调队列优化DP 二分]
2806: [Ctsc2012]Cheat 题意: 多个主串和多个询问串,每次询问将询问串分成多个连续子串,如果一个子串长度>=L且在主串中出现过就是熟悉的 如果熟悉的字符串长度>=询问串 ...
- bzoj 2806 [Ctsc2012]Cheat——广义后缀自动机+单调队列优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2806 只想着怎么用后缀数据结构做,其实应该考虑结合其他算法. 可以二分那个长度 L .设当前 ...
- bzoj 1855 dp + 单调队列优化
思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...
- bzoj 1499 [NOI2005]瑰丽华尔兹——单调队列优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1499 简单的单调队列优化dp.(然而当时却WA得不行.今天总算填了坑) 注意滚动数组赋初值应 ...
随机推荐
- GET,POST请求
get请求 post请求
- Mean, Median, Mode, Range, and Standard Deviation
Descriptive statistics tell you about the distribution of data points in data set. The most common m ...
- 紫书 习题 8-21 UVa 1621 (问题分析方法)
知道是构造法但是想了挺久没有什么思路. 然后去找博客竟然只有一篇!!https://blog.csdn.net/no_name233/article/details/51909300 然后博客里面又说 ...
- OpenJDK源码研究笔记(四)-编写和组织可复用的工具类和方法
本篇主要讲解java.util.Arrays这个针对数组的工具类. 1.可复用的工具类和方法. 这个工具类里,包含很多针对数组的工具方法,如 排序.交换.二分查找.比较.填充.复制.hashcode ...
- 【Henu ACM Round#24 E】Connected Components
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 要求把连续的一段li..ri的边全都删掉. 然后求剩下的图的联通数 如果暴力的话 复杂度显然是O(k*m)级别的. 考虑我们把li. ...
- POJ 2375 Cow Ski Area
Cow Ski Area Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original I ...
- (三)ng-app的使用困惑和angularJS框架的自己主动载入
ng-app是angular的一个指令,代表一个angular应用(也叫模块).使用ng-app或ng-app=""来标记一个DOM结点.让框架会自己主动载入.也就是说,ng-ap ...
- 用jquery给select加选中事件
select在前端开发过程中很常用,现在我们要实现一个效果,那就是选中select中的某一项,执行事件,本来自己没怎么接触过这些,最后网上找了一些资料,自己研究了一下,把方法分享给大家,大家如果有需要 ...
- spring boot actuator工作原理之http服务暴露源码分析
spring boot actuator的官方文档地址:https://docs.spring.io/spring-boot/docs/current/reference/html/productio ...
- 对OC中property的一点理解
最近在看即将要加入的项目的代码,看到一个protocol里包含着几个property.之前没有写过类似的代码,看到这里的时候,突然疑惑了一下,发现自己对property的理解好像有点模糊.所以回家后又 ...