题目描述

有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号。你要给它染色,使得相邻节点的颜色不同。有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号。每个节点可以染MM种颜色中的若干种,求不同染色方案的数量除以(10^9 + 7109+7)的余数。

输入输出格式

输入格式:

第1 行,2 个整数N,MN,M。

接下来NN行,第ii行表示节点ii可以染的颜色。第1个整数k_iki​,表示可以染的颜色数量。接下来k_iki​个整数,表示可以染的颜色编号。

最后N - 1N−1行,每行2个整数A_i,B_iAi​,Bi​,表示边(A_i,B_i)(Ai​,Bi​)。

输出格式:

1 个整数,表示所有的数。

输入输出样例

输入样例#1: 复制

2 2
1 1
2 1 2
1 2
输出样例#1: 复制

1

说明

• 对于30% 的数据,1 \le N \le 10; 1 \le M \le 41≤N≤10;1≤M≤4;

• 对于60% 的数据,1 \le N \le 200; 1 \le M \le 2001≤N≤200;1≤M≤200;

• 对于100% 的数据,1 \le N \le 5000; 1 \le M \le 50001≤N≤5000;1≤M≤5000。

思路:组合数学+树形DP。

f[i][j]表示在以i为根的子树中,当i号节点的颜色为j时的方案数。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 1000000007
#define MAXN 5010
using namespace std;
int n,m,tot;
int ans[MAXN],f[][];
int to[MAXN*],net[MAXN*],head[MAXN*];
void add(int u,int v){
to[++tot]=v;net[tot]=head[u];head[u]=tot;
to[++tot]=u;net[tot]=head[v];head[v]=tot;
}
void dfs(int now,int fa){
for(int i=head[now];i;i=net[i])
if(to[i]!=fa)
dfs(to[i],now);
for(int i=;i<=m;i++)
if(f[now][i]){
for(int j=head[now];j;j=net[j])
if(to[j]!=fa)
f[now][i]=1LL*f[now][i]*(ans[to[j]]-f[to[j]][i])%mod;
while(f[now][i]<) f[now][i]+=mod;
ans[now]=(ans[now]+f[now][i])%mod;
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
int k;scanf("%d",&k);
for(int j=;j<=k;j++){
int q;scanf("%d",&q);
f[i][q]++;
}
}
for(int i=;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
add(,);
dfs(,);
printf("%d",ans[]);
}

洛谷 P3914 染色计数的更多相关文章

  1. 洛谷——P3914 染色计数

    P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号 ...

  2. 洛谷P1144-最短路计数-最短路变形

    洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...

  3. 洛谷P2486 染色

    LCT的一种姿势. 题意:给定一棵树.每次把一条路径上的点染成一种颜色,求一条路径上有多少段颜色. 解: 首先可以很轻易的用树剖解决,只不过代码量让人望而却步... 有一种难以想象的LCT做法... ...

  4. 洛谷——P1176 路径计数2

    P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...

  5. 洛谷 P1176 路径计数2

    P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...

  6. 洛谷 P3130 [USACO15DEC]计数haybalesCounting Haybales

    P3130 [USACO15DEC]计数haybalesCounting Haybales 题目描述 Farmer John is trying to hire contractors to help ...

  7. 洛谷 P2807 三角形计数

    P2807 三角形计数 题目背景 三角形计数(triangle) 递推 题目描述 把大三角形的每条边n等分,将对应的等分点连接起来(连接线分别平行于三条边),这样一共会有多少三角形呢?编程来解决这个问 ...

  8. 洛谷P1608 路径计数

    题目简介 题目描述 给你一个N点M边的有向图,求第一个点到第n个点的最短路和最短路条数 题目分析 很明显直接Dijkstra求最短路,加一个最短路计数 如下: if(dis[y]>dis[x]+ ...

  9. P3914染色计数

    题目描述 有一颗\(N\)个节点的树,节点用\(1,2,\cdots,N\)编号.你要给它染色,使得相邻节点的颜色不同.有\(M\)种颜色,用\(1,2,\cdots,M\)编号.每个节点可以染\(M ...

随机推荐

  1. 1、使用Python3爬取美女图片-网站中的每日更新一栏

    此代码是根据网络上其他人的代码优化而成的, 环境准备: pip install lxml pip install bs4 pip install urllib #!/usr/bin/env pytho ...

  2. laydate 监听日期切换

    ```` //日期范围 laydate.render({ elem: '#Time', range: "至", max: gitData() ,done: function(val ...

  3. spring boot学习(转)

    玩转Spring Boot 前言         首先在这里对Spring Boot做个简单的介绍,对Spring Boot也关注了挺久了,Spring Boot是由Pivotal团队提供的全新框架, ...

  4. HDU 4307 Contest 1

    http://www.cnblogs.com/staginner/archive/2012/08/13/2636826.html 自己看过后两周吧,重新写了一遍.很受启发的.对于0.1,可以使用最小割 ...

  5. unity3d进程通信利用WM_COPYDATE和HOOK

    hello,近期用unity做了进程通信,应该是和c++的PC端实现通信,才開始一头雾水,后来实现了才知道好繁杂......先感谢对我提供帮助的百度,谷歌以及游戏圈的大大们. 在进程通信中非常多方法, ...

  6. JavaSE入门学习24:Java面向对象补充

    一Java中的Object类 Object类是全部Java类的父类.假设一个类没有使用extendskeyword明白标识继承另外一个类,那么这个类默认 继承Object类. public class ...

  7. ES跨版本升级?——难道升级集群发生shard allocation是因为要分配replica节点???

    Full cluster restart upgrade Elasticsearch requires a full cluster restart when upgrading across maj ...

  8. kettle工具的设计原则

    不多说,直接上干货! Kettle工具在设计初,就考虑到了一些设计原则.这些原则里借鉴了以前使用过的其他一些ETL工具积累下的经验和教训. 易于开发:作为数据仓库和ETL开发者,你只想把时间用在创建B ...

  9. Java文件(io)编程——简易记事本开发

    public class NotePad extends JFrame implements ActionListener{ //定义需要的组件 JTextArea jta=null; //多行文本框 ...

  10. php正则检测字符串由单一字符组成

    $str = 'aaa' $firstChar = substr($str , 0, 1); $pattern = "/^[$firstChar]+$/"; $ret = preg ...