【codeforces 553C】Love Triangles
【题目链接】:http://codeforces.com/problemset/problem/553/C
【题意】
给你n个点,m条边;
每种边有2两种类型;
让你补充剩下的边,构造一个完全图;
使得这个图中任意3个点的3条边中,0类型的边有2条,1类型的边有一条,或者全都是1类型的边;
问你有多少种构图方案;
【题解】
首先,可以肯定,那些1类型的边,连成的联通快,内部必然都是1类型的边;即一个团;
可以构成很多个团;
然后其他的团内的点,和某个团内的点的边只能都是同一种类型.
(即全是0边或全是1边,可以自己想想)
当然,我们还有一些0类型的边;
在我们把1类型的边构成的团全都缩成点之后;
再把0类型的边加进去;构造成一个新的图;
可以证明;
这张图除非能构成二分图,否则无解;
而构成二分图的条件是,不存在奇环;
(证:假设有奇环的话,对于长度为1的环,即自环,即1构成的团内还有0类型的边,显然无解,对于长度大于1的奇数环,比如长度为3的,这样,a[1]和a[3]本应该是1类型的边(a[1]-a[2],a[2]-a[3]都是0类型的边,则a[1]-a[3]肯定只能是1类型的边了),但是a[1]-a[3]却在一开始给了一条0类型的边,显然抵触,所以无解);
如果能构成二分图的话;
把这张加入了0边的新图构造出来;
则可以肯定,这里面的各个联通块内的“联通块内的边”是确定了的;
(根据0边,能够确定出其他的边);
我们要做的是在这张加入了0边后的新图里面,在不同的联通块之间建边;
也即再次把各个联通块缩成一个点;
而在此基础上再加边建造的图,必然也得是一个二分图才行;
现在相当于给了你cnt个点;
然后问你能够用这cnt个点建多少张二分图;
(二分图中,颜色一样的点在一边,颜色一样的点之间都建1边,然后两个不同颜色的点之间都建0边);
现在,相当于我们需要从这cnt个点中取出一些放在左边,剩下的放在右边;
答案应该为2cnt−1,这里之所以是cnt-1是因为左边选的集合,可能会和右边剩下的之前的一样;要去掉重复的,所以得除个2;即2cnt/2
【Number Of WA】
0
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("D:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0),cin.tie(0)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 1e5+100;
const LL MOD = 1e9+7;
struct abc{
int x,y,z;
};
int n,m,f[N],vis[N],col[N];
abc a[N];
vector <int> G[N];
int ff(int x){
if (f[x]==x) return x;
else
return f[x] = ff(f[x]);
}
bool dfs(int x,int c){
vis[x] = true;
col[x] = c;
bool flag = true;
for (int y:G[x]){
if (!vis[y]){
flag &= dfs(y,1-c);
}else {
if (col[y]==col[x]) return false;
}
}
return flag;
}
int main(){
//Open();
Close();
cin >> n >> m;
rep1(i,1,n) f[i] = i;
rep1(i,1,m){
cin >> a[i].x >> a[i].y >> a[i].z;
if (a[i].z){
int r1 = ff(a[i].x),r2 = ff(a[i].y);
if (r1!=r2){
f[r1] = r2;
}
}
}
rep1(i,1,n) ff(i);
rep1(i,1,m)
if (!a[i].z){
G[ff(a[i].x)].pb(ff(a[i].y));
G[ff(a[i].y)].pb(ff(a[i].x));
}
bool flag = true;
int cnt = 0;
rep1(i,1,n)
if (!vis[f[i]]){
flag &= dfs(f[i],0);
cnt++;
}
if (flag){
LL ans = 1;
rep1(i,1,cnt-1){
ans = (ans*2)%MOD;
}
cout << ans << endl;
}else{
cout << 0 << endl;
}
return 0;
}
【codeforces 553C】Love Triangles的更多相关文章
- 【codeforces 415D】Mashmokh and ACM(普通dp)
[codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...
- 【25.33%】【codeforces 552D】Vanya and Triangles
time limit per test4 seconds memory limit per test512 megabytes inputstandard input outputstandard o ...
- 【codeforces 229C】Triangles
[题目链接]:http://codeforces.com/problemset/problem/229/C [题意] 给你一张完全图; 然后1个人从中选择m条边; 然后另外一个人从中选择剩余的n*(n ...
- 【41.43%】【codeforces 560C】Gerald's Hexagon
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【codeforces 707E】Garlands
[题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...
- 【codeforces 707C】Pythagorean Triples
[题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...
- 【codeforces 709D】Recover the String
[题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...
- 【codeforces 709B】Checkpoints
[题目链接]:http://codeforces.com/contest/709/problem/B [题意] 让你从起点开始走过n-1个点(至少n-1个) 问你最少走多远; [题解] 肯定不多走啊; ...
- 【codeforces 709C】Letters Cyclic Shift
[题目链接]:http://codeforces.com/contest/709/problem/C [题意] 让你改变一个字符串的子集(连续的一段); ->这一段的每个字符的字母都变成之前的一 ...
随机推荐
- C文件I/O超详细教程
本文主要参考了C Primer Plus (5th & 6th Edition) 您可以选择本文的部分内容来读,有些内容对于不熟悉MS-DOS的读者可能过于晦涩难懂. C语言文件基本知识 文件 ...
- debian 9 安装Virtual Box
1.去官网下载deb包,例如包名: virtualbox-.2_5.2.18-124319_Debian_stretch_amd64.deb 2.安装 .2_5.2.18-124319_Debian_ ...
- 详解 QT 主要类 QWidget
QWidget类是所有用户界面对象的基类,每一个窗口部件都是矩形,并且它们按Z轴顺序排列的.一个窗口部件可以被它的父窗口部件或者它前面的窗口部件盖住一部分. 先来看内容. AD: 2013云计算架构师 ...
- ucore_lab1
练习1:理解通过make生成执行文件的过程.(要求在报告中写出对下述问题的回答) 实验过程 静态分析代码. 实验的目录结构如下: . ├── boot ├── kern │ ├── debug │ ...
- 洛谷 P1746 离开中山路
P1746 离开中山路 题目背景 <爱与愁的故事第三弹·shopping>最终章. 题目描述 爱与愁大神买完东西后,打算坐车离开中山路.现在爱与愁大神在x1,y1处,车站在x2,y2处.现 ...
- SharePoint 2010 安装教程
SharePoint Server 2010作为MOSS 2007的升级版本,自从2009年底发布Beta版本以来就备受关注,网络上已经出现了很多相关的文章,其中也不乏中文的信息. 最近SharePo ...
- Go语言核心之美 1.1-命名篇
命名篇 1.Go的函数.变量.常量.自己定义类型.包(Package)的命名方式遵循以下规则: 1)首字符能够是随意的Unicode字符或者下划线 2)剩余字符能够是Unicode字符.下划线.数字 ...
- UVA 11077 Find the Permutations 递推置换
Find the Permutations Sorting is one of the most used operations in real ...
- 高级程序员与CTO技术总监首席架构师
一.高级程序员 如果你是一个刚刚创业的公司,公司没有专职产品经理和项目经理,你就是公司的产品经理,你如果对你现在的开发员能力不满,那么你只需要的是一个高级程序员. 你定义功能.你做计划推进和管理,他可 ...
- Codeforces 667D World Tour 最短路
链接 Codeforces 667D World Tour 题意 给你一个有向稀疏图,3000个点,5000条边. 问选出4个点A,B,C,D 使得 A-B, B-C, C-D 的最短路之和最大. 思 ...