1.1 Introduction中 Topics and Logs官网剖析(博主推荐)
不多说,直接上干货!
一切来源于官网
http://kafka.apache.org/documentation/
Topics and Logs
话题和日志 (Topic和Log)
Let's first dive into the core abstraction Kafka provides for a stream of records—the topic.
让我们更深入的了解Kafka中的Topic。
A topic is a category or feed name to which records are published. Topics in Kafka are always multi-subscriber; that is, a topic can have zero, one, or many consumers that subscribe to the data written to it.
For each topic, the Kafka cluster maintains a partitioned log that looks like this:
Topic是发布的消息的类别或者种子Feed名。对于每一个Topic,Kafka集群维护这一个分区的log,就像下图中的示例:
Each partition is an ordered, immutable sequence of records that is continually appended to—a structured commit log. The records in the partitions are each assigned a sequential id number called the offset that uniquely identifies each record within the partition.
每一个分区都是一个顺序的、不可变的消息队列, 并且可以持续的添加。分区中的消息都被分了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。
The Kafka cluster retains all published records—whether or not they have been consumed—using a configurable retention period. For example, if the retention policy is set to two days, then for the two days after a record is published, it is available for consumption, after which it will be discarded to free up space. Kafka's performance is effectively constant with respect to data size so storing data for a long time is not a problem.
Kafka集群保持所有的消息,直到它们过期, 无论消息是否被消费了。 实际上消费者所持有的仅有的元数据就是这个偏移量,也就是消费者在这个log中的位置。
这个偏移量由消费者控制:正常情况当消费者消费消息的时候,偏移量也线性的的增加。
但是实际偏移量由消费者控制,消费者可以将偏移量重置为更老的一个偏移量,重新读取消息。
可以看到这种设计对消费者来说操作自如, 一个消费者的操作不会影响其它消费者对此log的处理。
再说说分区。Kafka中采用分区的设计有几个目的。一是可以处理更多的消息,不受单台服务器的限制。
Topic拥有多个分区意味着它可以不受限的处理更多的数据。第二,分区可以作为并行处理的单元,稍后会谈到这一点。
In fact, the only metadata retained on a per-consumer basis is the offset or position of that consumer in the log. This offset is controlled by the consumer: normally a consumer will advance its offset linearly as it reads records, but, in fact, since the position is controlled by the consumer it can consume records in any order it likes. For example a consumer can reset to an older offset to reprocess data from the past or skip ahead to the most recent record and start consuming from "now".
This combination of features means that Kafka consumers are very cheap—they can come and go without much impact on the cluster or on other consumers. For example, you can use our command line tools to "tail" the contents of any topic without changing what is consumed by any existing consumers.
The partitions in the log serve several purposes. First, they allow the log to scale beyond a size that will fit on a single server. Each individual partition must fit on the servers that host it, but a topic may have many partitions so it can handle an arbitrary amount of data. Second they act as the unit of parallelism—more on that in a bit.
1.1 Introduction中 Topics and Logs官网剖析(博主推荐)的更多相关文章
- Flume Channel Selectors官网剖析(博主推荐)
不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) 一切来源于flume官网 http://flume.apache.org/Flu ...
- Flume Channels官网剖析(博主推荐)
不多说,直接上干货! Flume Sources官网剖析(博主推荐) 一切来源于flume官网 http://flume.apache.org/FlumeUserGuide.html Flume Ch ...
- Flume Source官网剖析(博主推荐)
不多说,直接上干货! 一切来源于flume官网 http://flume.apache.org/FlumeUserGuide.html Flume Sources Avro Source Thrift ...
- 1.2 Use Cases中 Website Activity Tracking官网剖析(博主推荐)
不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Website Activity Tracking 网站活动追踪 The origi ...
- Flume Interceptors官网剖析(博主推荐)
不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...
- Event Serializers官网剖析(博主推荐)
不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...
- Flume Sink Processors官网剖析(博主推荐)
不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) Flume ...
- Flume Sinks官网剖析(博主推荐)
不多说,直接上干货! Flume Sources官网剖析(博主推荐) Flume Channels官网剖析(博主推荐) Flume Channel Selectors官网剖析(博主推荐) 一切来源于f ...
- 怎样取消老毛桃软件赞助商---只需在输入框中输入老毛桃官网网址“laomaotao.org”
来源:www.laomaotao.org 时间:2015-01-29 在众多网友和赞助商的支持下,迄今为止,老毛桃u盘启动盘制作工具已经推出了多个版本.如果有用户希望取消显示老毛桃软件中的赞助商,那不 ...
随机推荐
- JAVA线程队列BlockingQueue
JAVA线程队列BlockingQueue 介绍 BlockingQueue阻塞队列,顾名思义,首先它是一个队列,通过一个共享的队列,可以使得数据由队列的一端输入,从另外一端输出. 常用的队列主要有以 ...
- 基于 Web 的 Go 语言 IDE - Wide 1.2.0 发布!
Wide 是什么 Wide 是一个基于 Web 的 Go 语言团队 IDE. 在线开发:打开浏览器就可以进行开发.全快捷键 智能提示:代码自动完成.查看表达式.编译反馈.Lint 实时运行:极速编译. ...
- 如何查看 Linux 中所有正在运行的服务
有许多方法和工具可以查看 Linux 中所有正在运行的服务.大多数管理员会在 System V(SysV)初始化系统中使用 service service-name status 或 /etc/ini ...
- UVC和V4L2的关系(转载)
UVC是一种usb视频设备驱动.用来支持usb视频设备,凡是usb接口的摄像头都能够支持 V4L2是Linux下的视频采集框架.用来统一接口,向应用层提供API UVC: USB video clas ...
- Android布局之LinearLayout
LinearLayout 1.核心属性 高度:layout_height (基于内容 wrap_content:基于父控件:) 宽度:layout_width 方向:orientation (纵 ...
- 封装TensorFlow神经网络
为了参加今年的软件杯设计大赛,这几个月学习了很多新知识.现在大赛的第二轮作品优化已经提交,开始对这四个月所学知识做一些总结与记录. 用TensorFlow搭建神经网络.TensorFlow将神经网络的 ...
- Transport Tablespace Set(三) ----transport single tablespace
源端字符集与endian查看: SQL> select userenv('language') from dual; USERENV('LANGUAGE') SIMPLIFIED CHINESE ...
- dfs算法中求数列的组合
/* 从13个书中挑选5个值,他们的组合可能是 什么, 如下代码 dfs深度遍历, 和全排列是一种方法,但是思路不同 */ public class Main { static int count = ...
- HDU 2191 悼念512汶川大地震
悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Jav ...
- 信号 signal sigaction补充
目前linux中的signal()是通过sigation()函数实现的. 由signal()安装的实时信号支持排队,同样不会丢失. 先看signal 和 sigaction 的区别: 关键是 stru ...