题目描述

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 …

3/1 3/2 3/3 …

4/1 4/2 …

5/1 …

… 我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

输入输出格式

输入格式:

整数N(1≤N≤10000000)

输出格式:

表中的第N项

输入输出样例

输入样例#1: 复制

7
输出样例#1: 复制

1/4
思路:找规律
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,num,pos;
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
n-=i;num++;
if(n<){ n+=i;num--;break; }
if(n==) break;
}
if(num%==){
if(n==){ cout<<num<<"/1";}
else{ pos=num+;cout<<pos-n+<<"/"<<pos-(pos-n+)+; }
}
else{
if(n==){ cout<<"1/"<<num; }
else{ pos=num+; cout<<n<<"/"<<pos-n+; }
}
}
 

洛谷 P1014 Cantor表的更多相关文章

  1. 洛谷——P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  2. 洛谷P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  3. [NOIP1999] 提高组 洛谷P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  4. 洛谷 P1014 Cantor表 Label:续命模拟QAQ

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  5. (模拟) codeVs1083 && 洛谷P1014 Cantor表

    题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/ ...

  6. 洛谷 P1014 Cantor表【蛇皮矩阵/找规律/模拟】

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  7. java实现 洛谷 P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/2 2/3 2/4 - ...

  8. (水题)洛谷 - P1014 - Cantor表

    https://www.luogu.org/problemnew/show/P1014 很显然同一对角线的和是相等的.我们求出前缀和然后二分. 最后注意奇偶的顺序是相反的. #include<b ...

  9. 洛谷P1482 Cantor表(升级版) 题解

    题目传送门 此题zha一看非常简单. 再一看特别简单. 最后瞟一眼,还是很简单. 所以在此就唠一下GCD大法吧: int gcd(int x,int y){ if(x<y) return gcd ...

随机推荐

  1. js中arguments对象和this对象

    js中arguments对象和this属性 如果不注重复习,花时间准备的材料毫无意义 arguments对象和this对象都是对象 直接来代码 <!DOCTYPE html> <ht ...

  2. C++中explicit关键字作用

    explicit是c++中不太常用的一个关键字,其作用是用于修饰构造函数,告诉编译器定义对象时不做隐式转换. 举例说明: include <iostream> include <st ...

  3. ipad无法连接到app store怎么办

    之前入手的air2提示无法连接到app store:你需要首先更新系统到最新的ios版本,去通用设置里面,有个update software, 点击即可,然后才能用apple id 联入,否选择提示连 ...

  4. spring 中国下载点

    http://repo.spring.io/libs-release-local/org/springframework/spring/ spring 中国下载点

  5. stat---显示文件的状态信息

    stat命令用于显示文件的状态信息.stat命令的输出信息比ls命令的输出信息要更详细. 语法 stat(选项)(参数) 选项 -L:支持符号连接: -f:显示文件系统状态而非文件状态: -t:以简洁 ...

  6. 洛谷——P1027 Car的旅行路线

    https://www.luogu.org/problem/show?pid=1027#sub 题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于 ...

  7. I帧、P帧和B帧的特点

    I帧:帧内编码帧 I帧特点: 1.它是一个全帧压缩编码帧.它将全帧图像信息进行JPEG压缩编码及传输; 2.解码时仅用I帧的数据就可重构完整图像; 3.I帧描写叙述了图像背景和运动主体的详情; 4.I ...

  8. mysql通过字段凝视查找字段名称

    有时候表的字段太多.仅仅是大致记得表的凝视,想通过字段凝视查找字段名称,能够用例如以下语句: SELECT COLUMN_NAME,column_comment FROM INFORMATION_SC ...

  9. 用ElasticSearch,LogStash,Kibana搭建实时日志收集系统

    用ElasticSearch,LogStash,Kibana搭建实时日志收集系统 介绍 这套系统,logstash负责收集处理日志文件内容存储到elasticsearch搜索引擎数据库中.kibana ...

  10. Eclipse上开发IBM Bluemix应用程序

    林炳文Evankaka原创作品. 转载请注明出处http://blog.csdn.net/evankaka 摘要:本文主要解说了怎样使用安装EclipseIBM Bluemix插件.并在Eclipse ...