物体的轮廓勾勒出了物体的整体形状,物体形状的边界像素一起组合成了轮廓。

灰度图像边界的明显特征是边界两侧灰度级的突变,根据这个特征,使用Sobel、拉普拉斯或Canny之类的边缘检测算子可以有效的检测到物体的边界,所有连续的边界像素组合在一起成为一个整体,就构成了物体的轮廓。

轮廓检测可以使用findContours函数,检测步骤是:

1.  使用拉普拉斯或Canny等边缘检测算子处理图像,获得仅包含边界的二值图像

2.  使用findContorus方法,获取图像所有的边界连续像素序列,并保存在contours向量中

3.  标示出contours向量中所有的轮廓序列

以下Opencv实现:

#include "core/core.hpp"
#include "highgui/highgui.hpp"
#include "imgproc/imgproc.hpp"
#include "iostream" using namespace std;
using namespace cv; int main(int argc,char *argv[])
{
Mat imageSource=imread(argv[1],0);
imshow("Source Image",imageSource);
Mat image;
GaussianBlur(imageSource,image,Size(3,3),0);
Canny(image,image,100,250);
imshow("Canny Image",image);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(image,contours,hierarchy,RETR_TREE,CHAIN_APPROX_SIMPLE,Point());
Mat imageContours=Mat::zeros(image.size(),CV_8UC1);
for(int i=0;i<contours.size();i++)
{
drawContours(imageContours,contours,i,Scalar(255),1,8,hierarchy);
}
imshow("Contours Image",imageContours);
waitKey(0);
return 0;
}

原图:

Canny边缘:

轮廓:

轮廓图像和Canny图像乍看起来表现几乎是一致的,但其实组成两者的数据结构差别很大:

Canny边缘图像只是一些相互独立的散点勾勒出了一个边界,点与点之间没有联系,是没有“思想”的;

轮廓图像是一系列的点组成的,相邻的点与点同属于一个轮廓“集合”,连续的点构成了一个整体,甚至我们可以通过编号对每个轮廓定位,定义其前后轮廓线段,内外轮廓包含、隶属等树形关系,是有“思想”,可进一步处理的。

findContours 轮廓查找的更多相关文章

  1. opencv学习之路(22)、轮廓查找与绘制(一)

    一.简介 图2 二.代码 #include"opencv2/opencv.hpp" #include<iostream> using namespace std; us ...

  2. opencv学习之路(28)、轮廓查找与绘制(七)——位置关系及轮廓匹配

    一.点与轮廓的距离及位置关系 #include "opencv2/opencv.hpp" #include <iostream> using namespace std ...

  3. opencv学习之路(27)、轮廓查找与绘制(六)——外接圆、椭圆拟合、逼近多边形曲线、计算轮廓面积及长度、提取不规则轮廓

    一.最小外接圆 #include "opencv2/opencv.hpp" #include<iostream> using namespace std; using ...

  4. opencv学习之路(25)、轮廓查找与绘制(四)——正外接矩形

    一.简介 二.外接矩形的查找绘制 #include "opencv2/opencv.hpp" using namespace cv; void main() { //外接矩形的查找 ...

  5. opencv学习之路(24)、轮廓查找与绘制(三)——凸包

    一.简介 二.绘制点集的凸包 #include<opencv2/opencv.hpp> using namespace cv; void main() { //---绘制点集的凸包 Mat ...

  6. opencv学习之路(23)、轮廓查找与绘制(二)——访问轮廓每个点

    一.简介 二.画出每个轮廓的每个点 #include "opencv2/opencv.hpp" using namespace cv; void main() { Mat src= ...

  7. OpenCV探索之路(十一):轮廓查找和多边形包围轮廓

    Canny一类的边缘检测算法可以根据像素之间的差异,检测出轮廓边界的像素,但它没有将轮廓作为一个整体.所以要将轮廓提起出来,就必须将这些边缘像素组装成轮廓. OpenCV中有一个很强大的函数,它可以从 ...

  8. opencv学习之路(29)、轮廓查找与绘制(八)——轮廓特征属性及应用

    一.简介 HSV颜色空间(hue色调,saturation饱和度,value亮度) 二.HSV滑动条 #include "opencv2/opencv.hpp" #include ...

  9. opencv学习之路(26)、轮廓查找与绘制(五)——最小外接矩形

    一.简介 二.轮廓最小外接矩形的绘制 #include "opencv2/opencv.hpp" using namespace cv; void main() { //轮廓最小外 ...

随机推荐

  1. JDBC: 批量处理提高SQL处理速度

    引用:忘了 当需要成批插入或者更新记录时.可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率 JDBC的批量处理语句包括下面两个方法: a ...

  2. 【JSP】上传图片到数据库中

    第一步:建立数据库 create table test_img(id number(4),name varchar(20),img long raw); 第二步:(NewImg.html) <h ...

  3. Mysql 之实现多字段模糊查询

    在一个table中有省,市,县,期,栋,单元,室几个字段,然后用户输入一个地址从表中的字段拼接起来进行模糊查询. 解决办法: <MySQL权威指南>中CONCAT的使用方法,在书中的对CO ...

  4. CorelDRAW中内置的视频教程在哪里?

    CorelDRAW中内置了很多教学内容和视频教程,可以帮助用户快速学习和掌握CorelDRAW的使用方法,创作出个性化的作品.很多小伙伴表示找不到软件自带学习视频,现在小编就来告诉你. 用户可以通过两 ...

  5. python 字符串模糊匹配 Fuzzywuzzy

    Python提供fuzzywuzzy模块,不仅可用于计算两个字符串之间的相似度,而且还提供排序接口能从大量候选集中找到最相似的句子. (1)安装 pip install fuzzywuzzy (2)接 ...

  6. 【转载】VMware完全卸载

    出现安装时出现vmwareworkstationxxx.msi failed问题是官方解决方案...真心详细. http://kb.vmware.com/selfservice/microsites/ ...

  7. MySQL常用增删改查等操作语句

    修改数据库的字符集    mysql>use mydb    mysql>alter database mydb character set utf8;创建数据库指定数据库的字符集    ...

  8. DOCKER - J2EE中容器:WEB容器、EJB容器

    转自:http://www.voidcn.com/article/p-yizkqdxp-zg.html

  9. eas之EntityViewInfo对象mainQuery中查询条件

    EntityViewInfo对象mainQuery中查询条件:  添加查询字段:(Sql语句中的selectz子句内容)    SelecttorItemCollection sic=new Sele ...

  10. 【JavaScript高级进阶】JavaScript变量/函数提升的细节总结

    // 测试1 console.log('----------test1--------------'); console.log(global); // undefined var global = ...