Description

Let x and y be two strings over some finite alphabet A. We would like to transform
x into y allowing only operations given below:

  • Deletion: a letter in x is missing in y at a corresponding position.
  • Insertion: a letter in y is missing in x at a corresponding position.
  • Change: letters at corresponding positions are distinct

Certainly, we would like to minimize the number of all possible operations.

Illustration

A G T A A G T * A G G C
| | | | | | | A G T * C * T G A C G C

Deletion: * in the bottom line

Insertion: * in the top line

Change: when the letters at the top and bottom are distinct

This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like

A  G  T  A  A  G  T  A  G  G  C
| | | | | | | A G T C T G * A C G C

and 4 moves would be required (3 changes and 1 deletion).

In this problem we would always consider strings x and y to be fixed, such that the number of letters in
x is m and the number of letters in y is n where
nm.

Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.

Write a program that would minimize the number of possible operations to transform any string
x into a string y.

Input

The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.

Output

An integer representing the minimum number of possible operations to transform any string
x into a string y.

Sample Input

10 AGTCTGACGC
11 AGTAAGTAGGC

Sample Output

4
题意:
求由字符串s1,通过下列三种操作:
1.插入一个字符
2.删除一个字符
3.改变一个字符
变换的字符s2所须要 的最小操作次数。
思路:这是一个求编辑最短距离问题。利用动态规划,列出状态方程,设dp[i][j]表示字符串x[1...i]和字符串y[1...j]的最短编辑距离当x[i] == y[j]时,i和j不须要编辑,要么删除,要么插入。要么替换dp[i][j] = min(dp[i-1][j-1], dp[i-1][j] + 1, dp[i][j - 1] + 1)当x[i] != y[i]时, i和j不须要编辑dp[i][j] = min(dp[i-1][j-1] + 1, dp[i-1][j] + 1, dp[i][j-1]
+ 1);注意初始化dp[i][0] = dp[0][i] = i;
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1010;
char strx[maxn], stry[maxn];
int lenx, leny, dp[maxn][maxn];
int main()
{ while( scanf("%d %s", &lenx, strx + 1) != EOF)
{
scanf("%d %s", &leny, stry + 1);
int maxv = max(lenx, leny);
dp[0][0] = 0;
for(int i = 1; i <= maxv; i++)
dp[0][i] = dp[i][0] = i;
for(int i = 1; i <= lenx; i++)
{
for(int j = 1; j <= leny; j++)
{
dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1);
if(strx[i] == stry[j])
dp[i][j] = min(dp[i][j], dp[i-1][j-1]);
else
dp[i][j] = min(dp[i][j], dp[i-1][j-1] + 1);
}
}
printf("%d\n", dp[lenx][leny]);
} return 0;
}


poj 3356的更多相关文章

  1. POJ 3356(最短编辑距离问题)

    POJ - 3356 AGTC Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Desc ...

  2. POJ 3356 AGTC(最小编辑距离)

    POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...

  3. POJ 3356.AGTC

    问题简述: 输入两个序列x和y,分别执行下列三个步骤,将序列x转化为y (1)插入:(2)删除:(3)替换: 要求输出最小操作数. 原题链接:http://poj.org/problem?id=335 ...

  4. poj 3356 AGTC(线性dp)

    题目链接:http://poj.org/problem?id=3356 思路分析:题目为经典的编辑距离问题,其实质为动态规划问题: 编辑距离问题定义:给定一个字符串source,可以对其进行复制,替换 ...

  5. POJ 3356 水LCS

    题目链接: http://poj.org/problem?id=3356 AGTC Time Limit: 1000MS   Memory Limit: 65536K Total Submission ...

  6. POJ 3356 AGTC(DP-最小编辑距离)

    Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...

  7. POJ 3356 AGTC(最长公共子)

    AGTC Description Let x and y be two strings over some finite alphabet A. We would like to transform  ...

  8. POJ 3356 AGTC(DP求字符串编辑距离)

    给出两个长度小于1000的字符串,有三种操作,插入一个字符,删除一个字符,替换一个字符. 问A变成B所需的最少操作数(即编辑距离) 考虑DP,可以用反证法证明依次从头到尾对A,B进行匹配是不会影响答案 ...

  9. Poj 3356 ACGT(LCS 或 带备忘的递归)

    题意:把一个字符串通过增.删.改三种操作变成另外一个字符串,求最少的操作数. 分析: 可以用LCS求出最大公共子序列,再把两个串中更长的那一串中不是公共子序列的部分删除. 分析可知两个字符串的距离肯定 ...

随机推荐

  1. Linux - 理不清的权限chmod与chown区别

    chmod是修改第一列内容的 ,chown是修改第3,4列内容的. [root@local ~]# chmod 777 -R add.sh [root@local ~]# chown jiqing:j ...

  2. CodeForces 486B

    Let's define logical OR as an operation on two logical values (i. e. values that belong to the set { ...

  3. HDU 1257(最小拦截系统)

    Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不 能超过前一发的高度.某天,雷达 ...

  4. gdb的使用(转)

    gdb使用 转自清华大学操作系统实验指导书 gdb 是功能强大的调试程序,可完成如下的调试任务: 设置断点 监视程序变量的值 程序的单步(step in/step over)执行 显示/修改变量的值 ...

  5. php 0,null,empty,空,false,字符串关系(转)

    在php中由于是弱类型语言,不同类型值之间可以隐式转换,使得false,null,”,0,’0′这几个值的比较有些混乱,现总结一下: //相等判断 '' == NULL == 0 == false ( ...

  6. 【NOIP2011 Day 1】选择客栈

    [问题描述] 丽江河边有n家客栈,客栈按照其位置顺序从1到n编号.每家客栈都按照某一种色调进行装饰(总共k种,用整数0 ~ k-1表示),且每家客栈都设有一家咖啡店,每家咖啡店均有各自的最低消费.两位 ...

  7. Scala 大数据 常用算法收集

    一:IP转数字,用于比大小,用在求IP段范围中 def ip2Long(ip: String): Long = { val fragments = ip.split("[.]") ...

  8. 网页小技巧-360doc个人图书馆复制文字

    用过这个网站的人知道,当你像平时一样复制网页的地址时,这个网站会弹出如下的提示框: 这时候如果你没有账号,又不想注册.真的是一种很崩溃的感觉,但是除了注册登录外,就没有其他的办法了吗? 熟悉网页调试的 ...

  9. bzoj 1207 [HNOI2004]打鼹鼠 小技巧

    Description 鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿Q编写了一个打鼹鼠的游戏:在一个n*n的网格中,在某些时刻鼹鼠会在某一个网格探 ...

  10. Php+Redis队列原理

    我们新建一个文件queue.php <?php while(true){ echo 1; sleep(1); } 然后中 命令行里面 执行 php queue 你会发现每秒钟输出一个1:等了很久 ...