poj 3356
Description
Let x and y be two strings over some finite alphabet A. We would like to transform
x into y allowing only operations given below:
- Deletion: a letter in x is missing in y at a corresponding position.
- Insertion: a letter in y is missing in x at a corresponding position.
- Change: letters at corresponding positions are distinct
Certainly, we would like to minimize the number of all possible operations.
Illustration
A G T A A G T * A G G C
| | | | | | | A G T * C * T G A C G CDeletion: * in the bottom line
Insertion: * in the top line
Change: when the letters at the top and bottom are distinct
This tells us that to transform x = AGTCTGACGC into y = AGTAAGTAGGC we would be required to perform 5 operations (2 changes, 2 deletions and 1 insertion). If we want to minimize the number operations, we should do it like
A G T A A G T A G G C
| | | | | | | A G T C T G * A C G C
and 4 moves would be required (3 changes and 1 deletion).
In this problem we would always consider strings x and y to be fixed, such that the number of letters in
x is m and the number of letters in y is n where
n ≥ m.
Assign 1 as the cost of an operation performed. Otherwise, assign 0 if there is no operation performed.
Write a program that would minimize the number of possible operations to transform any string
x into a string y.
Input
The input consists of the strings x and y prefixed by their respective lengths, which are within 1000.
Output
An integer representing the minimum number of possible operations to transform any string
x into a string y.
Sample Input
10 AGTCTGACGC
11 AGTAAGTAGGC
Sample Output
4
+ 1);注意初始化dp[i][0] = dp[0][i] = i;
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1010;
char strx[maxn], stry[maxn];
int lenx, leny, dp[maxn][maxn];
int main()
{ while( scanf("%d %s", &lenx, strx + 1) != EOF)
{
scanf("%d %s", &leny, stry + 1);
int maxv = max(lenx, leny);
dp[0][0] = 0;
for(int i = 1; i <= maxv; i++)
dp[0][i] = dp[i][0] = i;
for(int i = 1; i <= lenx; i++)
{
for(int j = 1; j <= leny; j++)
{
dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1);
if(strx[i] == stry[j])
dp[i][j] = min(dp[i][j], dp[i-1][j-1]);
else
dp[i][j] = min(dp[i][j], dp[i-1][j-1] + 1);
}
}
printf("%d\n", dp[lenx][leny]);
} return 0;
}
poj 3356的更多相关文章
- POJ 3356(最短编辑距离问题)
POJ - 3356 AGTC Time Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Desc ...
- POJ 3356 AGTC(最小编辑距离)
POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...
- POJ 3356.AGTC
问题简述: 输入两个序列x和y,分别执行下列三个步骤,将序列x转化为y (1)插入:(2)删除:(3)替换: 要求输出最小操作数. 原题链接:http://poj.org/problem?id=335 ...
- poj 3356 AGTC(线性dp)
题目链接:http://poj.org/problem?id=3356 思路分析:题目为经典的编辑距离问题,其实质为动态规划问题: 编辑距离问题定义:给定一个字符串source,可以对其进行复制,替换 ...
- POJ 3356 水LCS
题目链接: http://poj.org/problem?id=3356 AGTC Time Limit: 1000MS Memory Limit: 65536K Total Submission ...
- POJ 3356 AGTC(DP-最小编辑距离)
Description Let x and y be two strings over some finite alphabet A. We would like to transform x int ...
- POJ 3356 AGTC(最长公共子)
AGTC Description Let x and y be two strings over some finite alphabet A. We would like to transform ...
- POJ 3356 AGTC(DP求字符串编辑距离)
给出两个长度小于1000的字符串,有三种操作,插入一个字符,删除一个字符,替换一个字符. 问A变成B所需的最少操作数(即编辑距离) 考虑DP,可以用反证法证明依次从头到尾对A,B进行匹配是不会影响答案 ...
- Poj 3356 ACGT(LCS 或 带备忘的递归)
题意:把一个字符串通过增.删.改三种操作变成另外一个字符串,求最少的操作数. 分析: 可以用LCS求出最大公共子序列,再把两个串中更长的那一串中不是公共子序列的部分删除. 分析可知两个字符串的距离肯定 ...
随机推荐
- makepy
文件连接: https://files.cnblogs.com/files/mophy/%E7%99%BB%E5%BD%95%E6%B5%81%E7%A8%8B%E5%88%86%E6%9E%90.7 ...
- android 更新ui
https://www.cnblogs.com/rayray/p/3437048.html https://www.cnblogs.com/zhaoyanjun/p/5546683.html
- Super超级ERP系统---(8)订单管理--订单创建
订单管理是ERP系统中一个重要模块,客户下订单,ERP通过订单来为客户进行配送.订单模块主要包括订单创建,订单修改,订单审核,订单取消,订单分配,订单打印,订单拣货,订单出库.在随后的几节里我们看看这 ...
- Tomcatsession共享方案--memcached-session-manager
https://github.com/magro/memcached-session-manager/wiki/SerializationStrategies MSM的特性: a.支持t ...
- wcf 学习程序
(一)创建WCF Service (1)创建WCF Service类库 创建一个Class Library的项目: 删除掉默认的Class1.cs文件,然后添加一个WCF Service项目: Vis ...
- Windows系统开发常用类-------------Environment类
Windows系统开发常用类-------------Environment类: SystemDirectory//显示系统目录 MachineName//计算机名称 ...
- WindowsNT设备驱动程序开发基础
一.背景介绍 1.1WindowsNT操作系统的组成1.1.1用户模式(UserMode)与内核模式(KernelMode) 从Intel80386开始,出于安全性和稳定性的考虑,该系列的CPU可以运 ...
- 了解jQuery的$符号
$是什么? 可以使用typeof关键字来观察$的本质. console.log(type of $); //输出结果为function 因此可以得出结论,$其实就是一个函数.$(); 只是根据所给参数 ...
- MySQL结构相关
MySQL 由以下几部分组成: 1.Connectors指的是不同语言中与SQL的交互 2.Management Serveices & Utilities: 系统管理和控制工具 3.Conn ...
- PHP在Linux的Apache环境下乱码解决方法
在windows平台编写的php程序默认编码是gb2312 而linux和apche默认的编码都是UTF-8 所以windows平台编写的php程序传到linux后,浏览网页中文都是乱码. 如果手工将 ...