BALNUM - Balanced Numbers

Time limit:123 ms

Memory limit:1572864 kB

Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

1)      Every even digit appears an odd number of times in its decimal representation

2)      Every odd digit appears an even number of times in its decimal representation

For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

Input

The first line contains an integer T representing the number of test cases.

A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019

Output

For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

Example

Input:
2
1 1000
1 9
Output:
147
4
分析:如何统计0~9是否出现过且是否出现奇偶次是难点;
   正解是三进制压缩,该位置为0代表没出现,1代表出现奇数次,2代表出现偶数次;
   不过一看内存这么大,可以随便做了,dp[i][j][k]分别代表位置,二进制判是否出现,二进制判每个数出现次数奇偶性;
   注意前导0不算;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e5+;
const int N=5e4+;
const int M=N**;
using namespace std;
inline ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
inline ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline void umax(ll &p,ll q){if(p<q)p=q;}
inline void umin(ll &p,ll q){if(p>q)p=q;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,num[],pos;
ll dp[][<<][<<],p,q;
ll dfs(int pos,int x,int y,int z,int k)
{
if(pos<)
{
int i;
rep(i,,)if(x>>i&&&(y>>i&)^(i&)!=)return ;
return ;
}
if(z&&k&&dp[pos][x][y]!=-)return dp[pos][x][y];
int now=z?:num[pos],i;
ll ret=;
rep(i,,now)
{
ret+=dfs(pos-,!i&&!k?x:x|(<<i),!i&&!k?y:y^(<<i),z||i<num[pos],k||i);
}
return z&&k?dp[pos][x][y]=ret:ret;
}
ll gao(ll x)
{
pos=;
while(x)num[pos++]=x%,x/=;
return dfs(pos-,,,,);
}
int main()
{
int i,j;
memset(dp,-,sizeof(dp));
scanf("%d",&t);
while(t--)
{
scanf("%lld%lld",&p,&q);
printf("%lld\n",gao(q)-gao(p-));
}
return ;
}

BALNUM - Balanced Numbers的更多相关文章

  1. SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]

    题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...

  2. SPOJ10606 BALNUM - Balanced Numbers(数位DP+状压)

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a ...

  3. SPOJ - BALNUM Balanced Numbers(数位dp+三进制状压)

    Balanced Numbers Balanced numbers have been used by mathematicians for centuries. A positive integer ...

  4. SPOJ - BALNUM - Balanced Numbers(数位DP)

    链接: https://vjudge.net/problem/SPOJ-BALNUM 题意: Balanced numbers have been used by mathematicians for ...

  5. SPOJ BALNUM Balanced Numbers (数位dp)

    题目:http://www.spoj.com/problems/BALNUM/en/ 题意:找出区间[A, B]内所有奇数字出现次数为偶数,偶数字出现次数为计数的数的个数. 分析: 明显的数位dp题, ...

  6. BALNUM - Balanced Numbers(数位dp)

    题目链接:http://www.spoj.com/problems/BALNUM/en/ 题意:问你在[A,B]的闭区间内有几个满足要求的数,要求为每个出现的奇数个数为偶数个,每个出现的偶数个数为奇数 ...

  7. SPOJ BALNUM Balanced Numbers(数位DP+状态压缩)题解

    思路: 把0~9的状态用3进制表示,数据量3^10 代码: #include<cstdio> #include<map> #include<set> #includ ...

  8. SPOJ - BALNUM Balanced Numbers

    题意: 求出所给范围内满足其数位上的奇数出现偶数次,数位上的偶数出现奇数次(或不出现)的数的个数. 思路: 对于0 ~ 9 每个数有3种情况. 1.没出现过 2.出现奇数次 3.出现偶数次 那么就可以 ...

  9. SPOJ BALNUM Balanced Numbers 平衡数(数位DP,状压)

    题意: 平衡树定义为“一个整数的某个数位若是奇数,则该奇数必定出现偶数次:偶数位则必须出现奇数次”,比如 222,数位为偶数2,共出现3次,是奇数次,所以合法.给一个区间[L,R],问有多少个平衡数? ...

随机推荐

  1. iOS刷新某个cell时候crash

    //一个section刷新     NSIndexSet *indexSet=[[NSIndexSet alloc]initWithIndex:2];     [tableview reloadSec ...

  2. Windows 驱动开发 - 8

    最后的一点开发工作:跟踪驱动. 一.驱动跟踪 1. 包括TMH头文件 #include "step5.tmh" 2. 初始化跟踪 在DriverEntry中初始化. WPP_INI ...

  3. Linux vs Window

    目前国内Linux更多的是应用于服务器上,而桌面操作系统更多使用的是Window.主要区别如下: 比较 Windows Linux 界面 界面统一,外壳程序固定所有Windows程序菜单几乎一致,快捷 ...

  4. oc58--Category注意事项

    // // main.m // Category注意事项 #import <Foundation/Foundation.h> #import "Person+NJ.h" ...

  5. 地图使用-----MapKit介绍

    一.MapKit介绍 1.苹果自带地图功能(高德地图),可以提供地图展示,查询,定位,导航等功能.使用MapKit框架实现地图功能,MapKit框架中所有数据类型的前缀都是MK 2.MapKit有一个 ...

  6. Gym - 101208J 2013 ACM-ICPC World Finals J.Pollution Solution 圆与多边形面积交

    题面 题意:给你一个半圆,和另一个多边形(可凹可凸),求面积交 题解:直接上板子,因为其实这个多边形不会穿过这个半圆,所以他和圆的交也就是和半圆的交 打的时候队友说凹的不行,不是板题,后面想想,圆与多 ...

  7. Java IO流文件复制/解压的几种方法总结

    引言 在JavaWeb项目开发过程,涉及到IO文件的读写操作以及文件的复制copy操作是作为一个程序员不可获取的知识,那接下来就总结一些copy文件的一些方法,与大家通过学习,如果还有其他更好的方法, ...

  8. [Swift]LeetCode1064. 不动点 | Fixed Point

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  9. Nginx报错-找不到路径

    前言 最近在git bash里输入命令启动Nginx服务,总提示找不到路径,令我困惑不已        我反复检查安装路径和输入命令,确认无误    小技巧:复制路径可直接ctrl+c后在git ba ...

  10. Python描述符:property()函数的小秘密

    描述符:将某种特殊类型的类的实例指派给另一个类的属性(注意:这里是类属性,而不是对象属性).而这种特殊类型的类就是实现了__get__,__set__,__delete__这三个方法中的一个或多个的新 ...