一、前向传播

在caffe中,卷积层做卷积的过程被转化成了由卷积核的参数组成的权重矩阵weights(简记为W)和feature map中的元素组成的输入矩阵(简记为Cin)的矩阵乘积W * Cin。在进行乘积之前,需要对卷积核的参数和feature map作处理,以得到WCin

下面用一个例子来说名上述两个过程。假设某一卷积层输入为c X h X w = 3 X 8 X 8的feature map,卷积核大小h1 X w1 = 2 X 2,个数c1 = 4,stride = 1,pad_h = pad_w = 0。

对feature map作处理,得到Cin的过程如下图(图中描述的是输入一个样本时的处理过程,在caffe中对一个batch_size的样本,也是在一个循环中一个一个地计算对输入的卷积)。

从图中可以看出,多层的feature map被转化成了一个矩阵,在caffe中,这个矩阵是以行优先的存储顺序存储在一个数组中。输出feature map的高、宽分别为

ho = (h + 2 * pad_h - h1)/stride + 1

wo = (w + 2 * pad_w - w1)/stride + 1

col_buff(即Cin)的维度为高 × 宽 = (c × h1 × w1) × (ho × wo)

对卷积核的参数作处理,得到W的过程如下图

权重矩阵的维度为高 × 宽 = (c1) × (c × h1 × w1)。caffe中的数据存储采用Blob结构,其存储的优先顺序为样本数(num) × 通道数(c) × 高(h) × 宽(w),w优先级最低,即在w维度上相邻元素之间的地址差是最小的。所以卷积核的参数按照blob的存储结构恰好就是一个权重矩阵W,不需要作任何处理。

下面以caffe自带的例子LeNet为例,结合源代码,来分析代码的实现过程(代码注释中参数的值是batch_size=64,网络正向传播到conv2层时的值)

网络结构如下

name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "examples/mnist/mnist_test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}

conv_layer.cpp

template <typename Dtype>
void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* weight = this->blobs_[]->cpu_data();
for (int i = ; i < bottom.size(); ++i) {
// bottom_data is the pointer of input feature map.
// top_data is the pointer of matrix Cout.
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* top_data = top[i]->mutable_cpu_data();
// Every time just forward one single sample.
for (int n = ; n < this->num_; ++n) {
// Compute Cout = W X Cin.
this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight,
top_data + n * this->top_dim_);
if (this->bias_term_) {
const Dtype* bias = this->blobs_[]->cpu_data();
// Compute Cout = Cout + b X I.
this->forward_cpu_bias(top_data + n * this->top_dim_, bias);
}
}
}
}

依次进入

this->forward_cpu_gemm(bottom_data + n * this->bottom_dim_, weight, top_data + n * this->top_dim_)

this->forward_cpu_bias(top_data + n * this->top_dim_, bias)

base_conv_layer.cpp

template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_cpu_gemm(const Dtype* input,
const Dtype* weights, Dtype* output, bool skip_im2col) {
const Dtype* col_buff = input;
if (!is_1x1_) {
if (!skip_im2col) {
// Generating Cin by one single input feature map.
conv_im2col_cpu(input, col_buffer_.mutable_cpu_data());
}
// col_buff is the pointer of matrix Cin.
col_buff = col_buffer_.cpu_data();
}
// The following takes caffe's example mnist as example to explain the value of every parameter.
// The value of these parameters are as follows when the solver forwarding into the conv2 layer.
// group_ = 1(usually is 1)
// conv_out_channels_ = c1 = 50
// conv_out_spatial_dim_ = ho * wo = 8 * 8 = 64
// kernel_dim_ = c(the number of channels of bottom) * h1 * w1 = 20 * 5 * 5 = 500
// weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ = 50 * 500 / 1 = 25000
// col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_ = 500 * 64 / 1 = 32000
// output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_ = 50 * 64 / 1 = 3200
// This function computes Cout = W X Cin.
for (int g = ; g < group_; ++g) {
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, conv_out_channels_ /
group_, conv_out_spatial_dim_, kernel_dim_,
(Dtype)., weights + weight_offset_ * g, col_buff + col_offset_ * g,
(Dtype)., output + output_offset_ * g);
}
} template <typename Dtype>
void BaseConvolutionLayer<Dtype>::forward_cpu_bias(Dtype* output,
const Dtype* bias) {
// The following takes caffe's example mnist as example to explain the value of every parameter.
// The value of these parameters are as follows when the solver forwarding into the conv2 layer.
// num_output_ = c1 = 50
// out_spatial_dim_ = ho * wo = 8 * 8 = 64
// bias_multiplier_ is the Blob of I(dimension h * w = 1 * out_spatial_dim_ = 1 * 64).
// This function computes Cout = Cout + b X I.
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_output_,
out_spatial_dim_, , (Dtype)., bias, bias_multiplier_.cpu_data(),
(Dtype)., output);
}

函数caffe_cpu_gemm

math_functions.cpp

template<>
void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,
const float alpha, const float* A, const float* B, const float beta,
float* C) {
int lda = (TransA == CblasNoTrans) ? K : M;
int ldb = (TransB == CblasNoTrans) ? N : K;
cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B,
ldb, beta, C, N);
}

参数说明参考该博客

进入conv_im2col_cpu(input, col_buffer_.mutable_cpu_data())

base_conv_layer.hpp

  // wrap im2col/col2im so we don't have to remember the (long) argument lists
inline void conv_im2col_cpu(const Dtype* data, Dtype* col_buff) {
if (!force_nd_im2col_ && num_spatial_axes_ == ) {
// Generating Cin by one single input feature map.
im2col_cpu(data, conv_in_channels_,
conv_input_shape_.cpu_data()[], conv_input_shape_.cpu_data()[],
kernel_shape_.cpu_data()[], kernel_shape_.cpu_data()[],
pad_.cpu_data()[], pad_.cpu_data()[],
stride_.cpu_data()[], stride_.cpu_data()[],
dilation_.cpu_data()[], dilation_.cpu_data()[], col_buff);
} else {
im2col_nd_cpu(data, num_spatial_axes_, conv_input_shape_.cpu_data(),
col_buffer_shape_.data(), kernel_shape_.cpu_data(),
pad_.cpu_data(), stride_.cpu_data(), dilation_.cpu_data(), col_buff);
}
}

最后进入im2col_cpu

im2col.cpp

// Function uses casting from int to unsigned to compare if value of
// parameter a is greater or equal to zero and lower than value of
// parameter b. The b parameter is of type signed and is always positive,
// therefore its value is always lower than 0x800... where casting
// negative value of a parameter converts it to value higher than 0x800...
// The casting allows to use one condition instead of two.
inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {
return static_cast<unsigned>(a) < static_cast<unsigned>(b);
} template <typename Dtype>
void im2col_cpu(const Dtype* data_im, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
Dtype* data_col) {
const int output_h = (height + * pad_h -
(dilation_h * (kernel_h - ) + )) / stride_h + ;
const int output_w = (width + * pad_w -
(dilation_w * (kernel_w - ) + )) / stride_w + ;
const int channel_size = height * width;
for (int channel = channels; channel--; data_im += channel_size) {
for (int kernel_row = ; kernel_row < kernel_h; kernel_row++) {
for (int kernel_col = ; kernel_col < kernel_w; kernel_col++) {
int input_row = -pad_h + kernel_row * dilation_h;
for (int output_rows = output_h; output_rows; output_rows--) {
if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
for (int output_cols = output_w; output_cols; output_cols--) {
// Pad up and below with 0 (the size of the two sides is identical).
*(data_col++) = ;
}
} else {
int input_col = -pad_w + kernel_col * dilation_w;
for (int output_col = output_w; output_col; output_col--) {
if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
// Select all the elements corresponding to the same order in every
// convolutional window and arrange them in a row successively.
*(data_col++) = data_im[input_row * width + input_col];
} else {
// Pad left and right with 0 (the size of the two sides is identical).
*(data_col++) = ;
}
input_col += stride_w;
}
}
input_row += stride_h;
}
}
}
}
}

二、反向传播

经过上面对前向传播的描述,可以将该过程简单地描述为权重矩阵(W)和输入矩阵(Cin)相乘最终得到输出矩阵(Cout)的过程,即W × Cin = Cout。反向传播的大体过程如下图(可以参考我写的前一章节

现在使用前向传播图示部分所使用的各种参数值为例,接着分析对应的反向传播的过程。

Loss对Cout的导数top_diff记为Tf

Tf另记为

反向传播的实质是在已知Tf的条件下求Loss对Cin的导数bottom_diff,我记为Bf,以及Loss对权重矩阵W的导数Wf

Bf另记为

W另记为

输入矩阵Cin另记为

前向传播的过程如下图所示

根据链式求导法则,易知

同理,有

以此类推,有

从而,有

同理可推出Loss对权重矩阵的导数

若卷积核中带有偏置项,则前向传播的过程变为

其中b的维度为(高 × 宽 = 4 × 1),I是一个维度为(高 × 宽 = 1 × 49)的元素全为1的矩阵

通过上述分析可知,此时BfWf都没变,Loss对偏置项的导数为

下面仍然以caffe自带的例子LeNet为例,结合源代码,来分析代码的实现过程(代码注释中参数的值是batch_size=64,网络反向传播到conv2层时的值)

conv_layer.cpp

template <typename Dtype>
void ConvolutionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
// weight is the pointer of weight matrix W.
// weight_diff is the pointer of matrix Wf
// which is gradient with respect to weight.
const Dtype* weight = this->blobs_[]->cpu_data();
Dtype* weight_diff = this->blobs_[]->mutable_cpu_diff();
for (int i = ; i < top.size(); ++i) {
// top_diff point to data that is the derivative of Loss respect to the output
// of the forward process of this layer (Cout), namely Tf.
// bottom_data is Cin.
// bottom_diff point to data that is the derivative of Loss respect to the input
// of the forward process of this layer (Cin), namely Bf.
const Dtype* top_diff = top[i]->cpu_diff();
const Dtype* bottom_data = bottom[i]->cpu_data();
Dtype* bottom_diff = bottom[i]->mutable_cpu_diff();
// Bias gradient, if necessary.
if (this->bias_term_ && this->param_propagate_down_[]) {
// bias_diff is the pointer of matrix bf
// which is gradient with respect to bias.
Dtype* bias_diff = this->blobs_[]->mutable_cpu_diff();
// Every time just backward one single sample, and then accumulate them.
for (int n = ; n < this->num_; ++n) {
// Compute bf and accumulate them (accumulate bf of a batch samples).
this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_);
}
}
if (this->param_propagate_down_[] || propagate_down[i]) {
for (int n = ; n < this->num_; ++n) {
if (this->param_propagate_down_[]) {
// Compute Wf and accumulate them (accumulate Wf of a batch samples).
this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_,
top_diff + n * this->top_dim_, weight_diff);
}
if (propagate_down[i]) {
// Compute Bf.
this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight,
bottom_diff + n * this->bottom_dim_);
}
}
}
}
}

依次进入

this->backward_cpu_bias(bias_diff, top_diff + n * this->top_dim_)

this->weight_cpu_gemm(bottom_data + n * this->bottom_dim_, top_diff + n * this->top_dim_, weight_diff)

this->backward_cpu_gemm(top_diff + n * this->top_dim_, weight, bottom_diff + n * this->bottom_dim_)

template <typename Dtype>
void BaseConvolutionLayer<Dtype>::backward_cpu_bias(Dtype* bias,
const Dtype* input) {
// The following takes caffe's example mnist as example to explain the value of every parameter.
// The value of these parameters are as follows when the solver backwarding into the conv2 layer.
// num_output_ = c1 = 50
// out_spatial_dim_ = ho * wo = 8 * 8 = 64
// bias_multiplier_ is the Blob of I(dimension h * w = 1 * out_spatial_dim_ = 1 * 64).
// This function computes bf = bf + Tf X I^T.
caffe_cpu_gemv<Dtype>(CblasNoTrans, num_output_, out_spatial_dim_, .,
input, bias_multiplier_.cpu_data(), ., bias);
} template <typename Dtype>
void BaseConvolutionLayer<Dtype>::weight_cpu_gemm(const Dtype* input,
const Dtype* output, Dtype* weights) {
const Dtype* col_buff = input;
if (!is_1x1_) {
// Generate Cin from input feature map.
conv_im2col_cpu(input, col_buffer_.mutable_cpu_data());
// col_buff is the pointer of matrix Cin.
col_buff = col_buffer_.cpu_data();
}
for (int g = ; g < group_; ++g) {
// The following takes caffe's example mnist as example to explain the value of every parameter.
// The value of these parameters are as follows when the solver backwarding into the conv2 layer.
// group_ = 1(usually is 1)
// conv_out_channels_ = c1 = 50
// kernel_dim_ = c(the number of channels of bottom) * h1 * w1 = 20 * 5 * 5 = 500
// conv_out_spatial_dim_ = ho * wo = 8 * 8 = 64
// output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_ = 50 * 64 / 1 = 3200
// col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_ = 500 * 64 / 1 = 32000
// weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ = 50 * 500 / 1 = 25000
// This function computes Wf = Wf + Tf X Cin^T.
caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans, conv_out_channels_ / group_,
kernel_dim_, conv_out_spatial_dim_,
(Dtype)., output + output_offset_ * g, col_buff + col_offset_ * g,
(Dtype)., weights + weight_offset_ * g);
}
} template <typename Dtype>
void BaseConvolutionLayer<Dtype>::backward_cpu_gemm(const Dtype* output,
const Dtype* weights, Dtype* input) {
// col_buff is the pointer of matrix Bf.
Dtype* col_buff = col_buffer_.mutable_cpu_data();
if (is_1x1_) {
col_buff = input;
}
for (int g = ; g < group_; ++g) {
// The following takes caffe's example mnist as example to explain the value of every parameter.
// The value of these parameters are as follows when the solver backwarding into the conv2 layer.
// group_ = 1(usually is 1)
// kernel_dim_ = c(the number of channels of bottom) * h1 * w1 = 20 * 5 * 5 = 500
// conv_out_spatial_dim_ = ho * wo = 8 * 8 = 64
// conv_out_channels_ = c1 = 50
// weight_offset_ = conv_out_channels_ * kernel_dim_ / group_ = 50 * 500 / 1 = 25000
// output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_ = 50 * 64 / 1 = 3200
// col_offset_ = kernel_dim_ * conv_out_spatial_dim_ / group_ = 500 * 64 / 1 = 32000
// This function computes Bf = W^T X Tf.
caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans, kernel_dim_,
conv_out_spatial_dim_, conv_out_channels_ / group_,
(Dtype)., weights + weight_offset_ * g, output + output_offset_ * g,
(Dtype)., col_buff + col_offset_ * g);
}
if (!is_1x1_) {
// This function is the reverse of conv_im2col_cpu. It transforms Bf into the form
// which is the same as the input feature map.
conv_col2im_cpu(col_buff, input);
}
}

函数caffe_cpu_gemv

math_functions.cpp

template <>
void caffe_cpu_gemv<float>(const CBLAS_TRANSPOSE TransA, const int M,
const int N, const float alpha, const float* A, const float* x,
const float beta, float* y) {
cblas_sgemv(CblasRowMajor, TransA, M, N, alpha, A, N, x, , beta, y, );
}

参数说明参考该博客

接着,进入conv_col2im_cpu(col_buff, input)

base_conv_layer.hpp

  inline void conv_col2im_cpu(const Dtype* col_buff, Dtype* data) {
if (!force_nd_im2col_ && num_spatial_axes_ == ) {
// This function is the reverse of conv_im2col_cpu. It transforms Bf into the form
// which is the same as the input feature map.
col2im_cpu(col_buff, conv_in_channels_,
conv_input_shape_.cpu_data()[], conv_input_shape_.cpu_data()[],
kernel_shape_.cpu_data()[], kernel_shape_.cpu_data()[],
pad_.cpu_data()[], pad_.cpu_data()[],
stride_.cpu_data()[], stride_.cpu_data()[],
dilation_.cpu_data()[], dilation_.cpu_data()[], data);
} else {
col2im_nd_cpu(col_buff, num_spatial_axes_, conv_input_shape_.cpu_data(),
col_buffer_shape_.data(), kernel_shape_.cpu_data(),
pad_.cpu_data(), stride_.cpu_data(), dilation_.cpu_data(), data);
}
}

最后进入col2im_cpu

im2col.cpp

template <typename Dtype>
void col2im_cpu(const Dtype* data_col, const int channels,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
Dtype* data_im) {
caffe_set(height * width * channels, Dtype(), data_im);
const int output_h = (height + * pad_h -
(dilation_h * (kernel_h - ) + )) / stride_h + ;
const int output_w = (width + * pad_w -
(dilation_w * (kernel_w - ) + )) / stride_w + ;
const int channel_size = height * width;
for (int channel = channels; channel--; data_im += channel_size) {
for (int kernel_row = ; kernel_row < kernel_h; kernel_row++) {
for (int kernel_col = ; kernel_col < kernel_w; kernel_col++) {
int input_row = -pad_h + kernel_row * dilation_h;
for (int output_rows = output_h; output_rows; output_rows--) {
if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
// Skip these addresses, because they are corresponding to padding zone(up and below).
data_col += output_w;
} else {
int input_col = -pad_w + kernel_col * dilation_w;
for (int output_col = output_w; output_col; output_col--) {
if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
// This expression is the reverse of the corresponding one in im2col_cpu.
data_im[input_row * width + input_col] += *data_col;
}
// Skip these addresses, because they are corresponding to padding zone(left and right).
data_col++;
input_col += stride_w;
}
}
input_row += stride_h;
}
}
}
}
}

caffe中ConvolutionLayer的前向和反向传播解析及源码阅读的更多相关文章

  1. flask_sqlalchemy中db.session是如何保持请求间独立的--源码阅读笔记

    本文主要是为了验证两个问题: flask处理请求时通过新建线程.进程.协程的区别(顺带一提) flask_sqlalchemy是如何使用db.session使多个请求中保函的改变同一个表的sql操作不 ...

  2. caffe中batch norm源码阅读

    1. batch norm 输入batch norm层的数据为[N, C, H, W], 该层计算得到均值为C个,方差为C个,输出数据为[N, C, H, W]. <1> 形象点说,均值的 ...

  3. 《神经网络的梯度推导与代码验证》之CNN前向和反向传播过程的代码验证

    在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所 ...

  4. 《神经网络的梯度推导与代码验证》之vanilla RNN前向和反向传播的代码验证

    在<神经网络的梯度推导与代码验证>之vanilla RNN的前向传播和反向梯度推导中,我们学习了vanilla RNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架 ...

  5. caffe源码阅读(2)-Layer

    神经网络是由层组成的,深度神经网络就是层数多了.layer对应神经网络的层.数据以Blob的形式,在不同的layer之间流动.caffe定义的神经网络已protobuf形式定义.例如: layer { ...

  6. Caffe源码阅读(1) 全连接层

    Caffe源码阅读(1) 全连接层 发表于 2014-09-15   |   今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src ...

  7. caffe-windows中classification.cpp的源码阅读

    caffe-windows中classification.cpp的源码阅读 命令格式: usage: classification string(模型描述文件net.prototxt) string( ...

  8. 源码阅读笔记 - 1 MSVC2015中的std::sort

    大约寒假开始的时候我就已经把std::sort的源码阅读完毕并理解其中的做法了,到了寒假结尾,姑且把它写出来 这是我的第一篇源码阅读笔记,以后会发更多的,包括算法和库实现,源码会按照我自己的代码风格格 ...

  9. go 中 select 源码阅读

    深入了解下 go 中的 select 前言 1.栗子一 2.栗子二 3.栗子三 看下源码实现 1.不存在 case 2.select 中仅存在一个 case 3.select 中存在两个 case,其 ...

随机推荐

  1. STL 集合部分操作

    3.28更新 在EOJ 1641 集合栈计算机中,使用并集和补集时候,第五个参数使用x.begin()会报错:assignment of read-only location,而使用inserter( ...

  2. springboot+webmagic实现java爬虫jdbc及mysql

    前段时间需要爬取网页上的信息,自己对于爬虫没有任何了解,就了解了一下webmagic,写了个简单的爬虫. 一.首先介绍一下webmagic: webmagic采用完全模块化的设计,功能覆盖整个爬虫的生 ...

  3. 前端面试:问到GET和POST两种区别

    最直观的区别就是GET把参数包含在URL中,POST通过request body传递参数. "标准答案"(本标准答案参考自w3schools): GET在浏览器回退时是无害的,而P ...

  4. 【NOI1999、LOJ#10019】生日蛋糕(搜索、最优化剪枝、可行性剪枝)

    主要是剪枝的问题,见代码,讲的很详细 #include<iostream> #include<cstdio> #include<cmath> #include< ...

  5. wap 5.23 网测几道题目

    1. n个犯人,m个省份, 如果相邻的2个犯人来自同一省份,则是不安全的,求不安全的个数. 正难则反,用全部的个数减去非法的个数,就是最后的答案. m^n - m * (m - 1) ^ (n - 1 ...

  6. Asp.net MVC访问框架页中嵌套的iframe页面时,如果session或cookie过期,登录验证超时怎样自动跳转到登录页

    一般登录验证的过滤器中,使用验证过滤器的Redirect方法,将请求重定向到指定的URL.但是如果我们要访问的页面是一个嵌套在框架页中的iframe页面时,这种重定向只会对iframe页面凑效,也就是 ...

  7. 5.17从零开始搭建springboot-dubbo的例子

    https://www.cnblogs.com/baijinqiang/p/10848259.html

  8. http接口 两种调用http接口的方法

    import org.apache.commons.httpclient.HttpClient; import org.apache.commons.httpclient.NameValuePair; ...

  9. mysql数据库之存储过程入门

    引用:百度百科 存储过程 存储过程(Stored Procedure)是在大型数据库系统中,一组为了完成特定功能的SQL 语句集,存储在数据库中,经过第一次编译后再次调用不需要再次编译,用户通过指定存 ...

  10. ★Java语法(二)——————————数据类型常见问题

    1.用float型定义变量:float a = 3.14 :是否正确? 不正确.“=” 两边的精度类型不匹配,应为:float a =(float)3.14 或  float a =3.14F 或   ...