[bzoj2850]巧克力王国_KD-Tree
巧克力王国 bzoj-2850
题目大意:给出n块巧克力,每块巧克力都有自己的两个参数x和y和本身的价值val,询问:m个人,每个人有两个系数和一个限度a,b,和c。求所有ax+by<=c的巧克力价值和。
注释:$1\le n,n\le 5\cdot 10^4$。
想法:我们将巧克力的两个参数分别当作它的横纵坐标,然后对于每一次询问就可以转化成查询给定直线下的点的点权和。
对于这个问题,我们可以建立KD-Tree解决。
估价函数就是看这个矩形是不是都选或者都不选,否则的话,就遍历这个矩形。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 50010
using namespace std;
typedef long long ll;
int d,root;
struct Node
{
ll c[2],p[2],maxn[2],minn[2],v,sum;
}a[N];
inline bool cmp(const Node &x,const Node &y)
{
return x.p[d]==y.p[d]?x.p[d^1]<y.p[d^1]:x.p[d]<y.p[d];
}
inline void pushup(int k,int s)
{
a[k].maxn[0]=max(a[k].maxn[0],a[s].maxn[0]);
a[k].minn[0]=min(a[k].minn[0],a[s].minn[0]);
a[k].maxn[1]=max(a[k].maxn[1],a[s].maxn[1]);
a[k].minn[1]=min(a[k].minn[1],a[s].minn[1]);
a[k].sum+=a[s].sum;
}
int build(int l,int r,int now)
{
int mid=(l+r)>>1;
d=now; nth_element(a+l,a+mid,a+r+1,cmp);
a[mid].maxn[0]=a[mid].minn[0]=a[mid].p[0];
a[mid].maxn[1]=a[mid].minn[1]=a[mid].p[1];
a[mid].sum=a[mid].v;
if(l<mid) a[mid].c[0]=build(l,mid-1,now^1),pushup(mid,a[mid].c[0]);
if(mid<r) a[mid].c[1]=build(mid+1,r,now^1),pushup(mid,a[mid].c[1]);
return mid;
}
int getdis(int k,ll x,ll y,ll z)
{
if(x >= 0 && y >= 0)
{
if(x*a[k].maxn[0]+y*a[k].maxn[1]<z) return 1;
if(x*a[k].minn[0]+y*a[k].minn[1]>=z) return -1;
}
else if(x < 0 && y >= 0)
{
if(x*a[k].minn[0]+y*a[k].maxn[1]<z) return 1;
if(x*a[k].maxn[0]+y*a[k].minn[1]>=z) return -1;
}
else if(x >= 0 && y < 0)
{
if(x*a[k].maxn[0]+y*a[k].minn[1]<z) return 1;
if(x*a[k].minn[0]+y*a[k].maxn[1]>=z) return -1;
}
else
{
if(x*a[k].minn[0]+y*a[k].minn[1]<z) return 1;
if(x*a[k].maxn[0]+y*a[k].maxn[1]>=z) return -1;
}
return 0;
}
ll query(int k,ll x,ll y,ll z)
{
int opt=getdis(k,x,y,z);
if(opt==1) return a[k].sum;
if(opt==-1) return 0;
ll ans=0;
if(x*a[k].p[0]+y*a[k].p[1]<z) ans+=a[k].v;
if(a[k].c[0]) ans+=query(a[k].c[0],x,y,z);
if(a[k].c[1]) ans+=query(a[k].c[1],x,y,z);
return ans;
}
int main()
{
int n,m;
ll x,y,z;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%lld%lld%lld",&a[i].p[0],&a[i].p[1],&a[i].v);
root=build(1,n,0);
for(int i=1;i<=m;i++) scanf("%lld%lld%lld",&x,&y,&z),printf("%lld\n",query(root,x,y,z));
return 0;
}
小结:这道题还挺裸的... ...
[bzoj2850]巧克力王国_KD-Tree的更多相关文章
- Bzoj2850 巧克力王国
Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 505 Solved: 204 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但 ...
- bzoj2850巧克力王国
巧克力王国 Time Limit: 60 Sec Memory Limit: 512 MBSubmit: 861 Solved: 325[Submit][Status][Discuss] Desc ...
- 【kd-tree】bzoj2850 巧克力王国
分四种情况讨论:a,b>=0 a,b<0 a>=0,b<0 a<0,b>=0 然后每次检验是否进入一个矩形框 或者 是否直接利用这个矩形框的答案 仅仅利用两个对角的 ...
- P4475 巧克力王国 k-d tree
思路:\(k-d\ tree\) 提交:2次 错因:\(query\)时有一个\(mx\)误写成\(mn\)窝太菜了. 题解: 先把\(k-d\ tree\)建出来,然后查询时判一下整个矩形是否整体\ ...
- 【BZOJ2850】巧克力王国 KDtree
[BZOJ2850]巧克力王国 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜 欢过于甜的巧克力.对于每一块巧克力,我们设 ...
- 【BZOJ2850】巧克力王国 [KD-tree]
巧克力王国 Time Limit: 60 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 巧克力王国里的巧克力都是由牛奶和 ...
- bzoj 2850 巧克力王国
bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd- ...
- 洛谷P4475 巧克力王国
洛谷P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 x 和 y 为 ...
- BZOJ2820 - 巧克力王国
原题链接 Description 给出个二维平面上的点,第个点为,权值为.接下来次询问,给出,求所有满足的点的权值和. Solution 对于这个点建一棵k-d树,子树维护一个子树和. 如果子树所代表 ...
随机推荐
- Akka源码分析-深入ActorRef&ActorPath
上一节我们深入讨论了ActorRef等相关的概念及其关系,但ActorRef和ActorPath的关系还需要再加以分析说明.其实还是官网说的比较清楚. “A path in an actor syst ...
- flask web 表单验证 WTForms
简介 WTForms 是一个flask集成框架,或者说是库,用于处理浏览器表单提交的数据,它在flask-WTF的基础上扩展并添加了一些随手可得的精巧帮助函数,这些函数将会是在flask里使用表单更加 ...
- ACM_求交集
求交集 Time Limit: 2000/1000ms (Java/Others) Problem Description: 输入集合A和B,按大小顺序输出A和B的交集. Input: 输入包含多组测 ...
- 为什么选择Sqoop?(三)
为什么选择 Sqoop? 通常基于三个方面的考虑: 1.它可以高效.可控地利用资源,可以通过调整任务数来控制任务的并发度.另外它还可以配置数据库的访问时间等等. 2.它可以自动的完成数据类型映射与转换 ...
- SAS学习笔记之《SAS编程与数据挖掘商业案例》(3)变量操作、观测值操作、SAS数据集管理
SAS学习笔记之<SAS编程与数据挖掘商业案例>(3)变量操作.观测值操作.SAS数据集管理 1. SAS变量操作的常用语句 ASSIGNMENT 创建或修改变量 SUM 累加变量或表达式 ...
- jsp之认识 servlet (基础、工作原理、容器请求处理)
Tomcat 的安装: eclipse 需要自行安装tomcat,这是web 项目运行的服务器.如果用的是MyEclipse,里面自带tomcat,方便清除部署垃圾,利于项目运行. Tomcat的安装 ...
- CSS——盒子居中显示
嵌套中个的子盒子使用了绝对定位,父盒子使用了相对定位.那么子盒子如何居中显示: 1.距离左偏离50% 2.margin-right子盒子宽度的一半 <!DOCTYPE html> < ...
- Apache、Nginx与Tomcat的区别
一. 定义: 1. Apache Apache HTTP服务器是一个模块化的服务器,可以运行在几乎所有广泛使用的计算机平台上.其属于应用服务器.Apache支持支持模块多,性能稳定,A ...
- HTTP常见状态码(404、400、500)等错误
一些常见的状态码为: 200 - 服务器成功返回网页 404 - 请求的网页不存在 503 - 服务不可用 详细分解: 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 代码 说明 ...
- js 滚动条
<script type="text/javascript"> //文档高度1016 包含隐藏的margin和padding 实际1000 //文档1000 //窗口高 ...