Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 9957   Accepted: 4537

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other
barn. Thus, the farm transportation system can be represented as a tree. 



Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P 



* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 

Source

USACO 2002 February

题目大意:问一个数删掉最少条边变成一个仅仅有n个结点的子树

ac代码

#include<stdio.h>
#include<string.h>
#define min(a,b) (a>b? b:a)
#define INF 0xfffffff
int dp[220][220];
int pre[220],head[220],vis[220],dig[220];
int n,p,cnt;
struct s
{
int u,v,w,next;
}edge[220*2];
void add(int u,int v)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void tree_dp(int u)
{
int i,j,k;
for(i=0;i<=p;i++)
{
dp[u][i]=INF;
}
dp[u][1]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
tree_dp(v);
for(k=p;k>=1;k--)
{
dp[u][k]=dp[u][k]+1;
for(j=1;j<k;j++)
{ dp[u][k]=min(dp[u][k],dp[u][j]+dp[v][k-j]);
}
}
}
}
int DP(int u)
{
tree_dp(u);
int ans=dp[u][p];
int i;
for(i=1;i<=n;i++)
{
ans=min(ans,dp[i][p]+1);
// printf("%d\n",dp[i][1]);
}
return ans;
}
int main()
{
//int n,p;
while(scanf("%d%d",&n,&p)!=EOF)
{
int i;
memset(dig,0,sizeof(dig));
memset(head,-1,sizeof(head));
cnt=0;
for(i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
dig[b]++;
}
int root;
for(i=1;i<=n;i++)
{
if(dig[i]==0)
root=i;
}
printf("%d\n",DP(root));
}
}

POJ题目1947 Rebuilding Roads(树形dp)的更多相关文章

  1. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  2. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  3. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  5. POJ 1947 Rebuilding Road(树形DP)

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

  6. POJ1947 - Rebuilding Roads(树形DP)

    题目大意 给定一棵n个结点的树,问最少需要删除多少条边使得某棵子树的结点个数为p 题解 很经典的树形DP~~~直接上方程吧 dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v] ...

  7. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  8. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

  9. POJ 1947 Rebuilding Roads

    树形DP..... Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8188 Accepted: ...

随机推荐

  1. JavaScript--编程

    第一步:把注释语句注释. 第二步:编写代码,在页面中显示 “系好安全带,准备启航--目标JS”文字: 第三步:编写代码,在页面中弹出提示框“准备好了,起航吧!” 提示: 可以把弹框方法写在函数里. 第 ...

  2. JavaScript--什么是函数

    函数是完成某个特定功能的一组语句.如没有函数,完成任务可能需要五行.十行.甚至更多的代码.这时我们就可以把完成特定功能的代码块放到一个函数里,直接调用这个函数,就省重复输入大量代码的麻烦. 如何定义一 ...

  3. [转]Android | Simple SQLite Database Tutorial

    本文转自:http://hmkcode.com/android-simple-sqlite-database-tutorial/ Android SQLite database is an integ ...

  4. RESTful 设计理论

    RESTful 设计: 1.协议通信协议:https 2.域名部署在API专用域名下,除非API很简单(https://www.example.com/api)https://api.example. ...

  5. Spring Cloud (4) 服务消费者-Feign

    Spring Cloud Feign Spring Cloud Feign 是一套基于Netflix Feign实现的声明式服务调用客户端.它使得编写Web服务客户端变得更加简单,我们只需要创建接口并 ...

  6. jvm gc日志解读

    参考 https://blog.csdn.net/yxc135/article/details/12137663 认识gc日志每个位置的含义 java 8 full gc [Full GC (Meta ...

  7. HTML中的行级标签和块级标签 《转换》

    1.html中的块级标签 显示为“块”状,浏览器会在其前后显示折行.常用的块级元素包括: <p>, <ul>,<table>,<h1~h6>等. 2.h ...

  8. 新认知之WinForm窗体程序

    Windows应用程序和控制台应用程序有很大的区别 >Form1.cs  :窗体文件,程序员对窗体编写的代码一般都存放在这个文件中. >Form1.Designer.cs :窗体设计文件, ...

  9. TriAquae 是一款由国产的基于Python开发的开源批量部署管理工具

    怀着鸡动的心情跟大家介绍一款国产开源运维软件TriAquae,轻松帮你搞定大部分运维工作!TriAquae 是一款由国产的基于Python开发的开源批量部署管理工具,可以允许用户通过一台控制端管理上千 ...

  10. cad二次开发中各种头的定义

    Database db=HostApplicationServices.WrokingDatabase; Editor ed=Autodesk.AutoCAD.ApplicationService.A ...