Rebuilding Roads
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 9957   Accepted: 4537

Description

The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other
barn. Thus, the farm transportation system can be represented as a tree. 



Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.

Input

* Line 1: Two integers, N and P 



* Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 

Output

A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 

Sample Input

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

Sample Output

2

Hint

[A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 

Source

USACO 2002 February

题目大意:问一个数删掉最少条边变成一个仅仅有n个结点的子树

ac代码

#include<stdio.h>
#include<string.h>
#define min(a,b) (a>b? b:a)
#define INF 0xfffffff
int dp[220][220];
int pre[220],head[220],vis[220],dig[220];
int n,p,cnt;
struct s
{
int u,v,w,next;
}edge[220*2];
void add(int u,int v)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
void tree_dp(int u)
{
int i,j,k;
for(i=0;i<=p;i++)
{
dp[u][i]=INF;
}
dp[u][1]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
tree_dp(v);
for(k=p;k>=1;k--)
{
dp[u][k]=dp[u][k]+1;
for(j=1;j<k;j++)
{ dp[u][k]=min(dp[u][k],dp[u][j]+dp[v][k-j]);
}
}
}
}
int DP(int u)
{
tree_dp(u);
int ans=dp[u][p];
int i;
for(i=1;i<=n;i++)
{
ans=min(ans,dp[i][p]+1);
// printf("%d\n",dp[i][1]);
}
return ans;
}
int main()
{
//int n,p;
while(scanf("%d%d",&n,&p)!=EOF)
{
int i;
memset(dig,0,sizeof(dig));
memset(head,-1,sizeof(head));
cnt=0;
for(i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
dig[b]++;
}
int root;
for(i=1;i<=n;i++)
{
if(dig[i]==0)
root=i;
}
printf("%d\n",DP(root));
}
}

POJ题目1947 Rebuilding Roads(树形dp)的更多相关文章

  1. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  2. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  3. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  5. POJ 1947 Rebuilding Road(树形DP)

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

  6. POJ1947 - Rebuilding Roads(树形DP)

    题目大意 给定一棵n个结点的树,问最少需要删除多少条边使得某棵子树的结点个数为p 题解 很经典的树形DP~~~直接上方程吧 dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v] ...

  7. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  8. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

  9. POJ 1947 Rebuilding Roads

    树形DP..... Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8188 Accepted: ...

随机推荐

  1. const修饰规则 及其 用法

    const指针和指向const变量的指针,在写法上容易让人混淆,记住一个规则:从左至右,依次结合,const就近结合. 比如,int * const p: 1.int * (const p):变量p经 ...

  2. 关于GIT使用过程中遇到的问题

    npm构建,将所需要安装的依赖添加至package.json文件中,使用cnpm i进行安装 #拉去指定项目的默认分支: git pull http://username:password@gitla ...

  3. SAS学习笔记之《SAS编程与数据挖掘商业案例》(5)SAS宏语言、SQL过程

    SAS学习笔记之<SAS编程与数据挖掘商业案例>(5)SAS宏语言.SQL过程 1. 一个SAS程序可能包含一个或几个语言成分: DATA步或PROC步 全程语句 SAS组件语言(SCL) ...

  4. 来自一个用户的体验-Alpha项目测试

    软件梦之队成员:201731062305 周蓉 这个作业属于哪个课程 <课程的链接> 这个作业要求在哪里 <作业要求的链接> 团队名称 <软件梦之队>(附上团队博客 ...

  5. Python3 每次处理一个字符

    """ Python3.4[文本]之每次处理一个字符 """ test_str = "my name is bixiaopeng& ...

  6. sql中表变量

    今天在公司看sql优化的文章的时候,提到了表变量,做下笔记. 表变量 顺便复习下临时表.

  7. python中struct.pack()函数和struct.unpack()函数

    python中的struct主要是用来处理C结构数据的,读入时先转换为Python的字符串类型,然后再转换为Python的结构化类型,比如元组(tuple)啥的~.一般输入的渠道来源于文件或者网络的二 ...

  8. MVC5+EasyUI+EF6+Linq通用权限系统出炉(1)

    1.先晒一下结构吧,

  9. 从ABC到流利口语-unit01

    Unit 1 Introduction1 Good evening,everyone.It's a pleasure to you all. My name is Wang Dong.I'M from ...

  10. mysql_基础2

    创建数据表: