题目背景

大家都知道,斐波那契数列是满足如下性质的一个数列:

• f(1) = 1

• f(2) = 1

• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)

题目描述

请你求出 f(n) mod 1000000007 的值。

输入输出格式

输入格式:

·第 1 行:一个整数 n

输出格式:

第 1 行: f(n) mod 1000000007 的值

输入输出样例

输入样例#1:

5

输出样例#1:

5

输入样例#2:

10

输出样例#2:

55

说明

对于 60% 的数据: n ≤ 92

对于 100% 的数据: n在long long(INT64)范围内。

嗯,用这个题来打个矩阵快速幂模板(~ ̄▽ ̄)~

code:

//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std; const long long MOD=1000000007;
const int MAX=3;
const int INF=0x3f3f3f3f; long long rd() {//一开始写的快读是int的交了三回才发现 o(╥﹏╥)o
long long x=0;
int fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9'&&c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
} struct mat{ //Matrix 矩阵
long long da[MAX][MAX];
int n,m; mat(int x=1,int y=1) {
n=x,m=y;
memset(da,0,sizeof da);
} void operator =(mat x) {
n=x.n,m=x.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=x.da[i][j];
} mat operator *(mat b) { //注意:需a.m==b.n
mat c;
c.n=n;c.m=b.m;
for(int i=1;i<=c.n;i++)
for(int j=1;j<=c.m;j++) {
c.da[i][j]=0;
for(int k=1;k<=m;k++)
c.da[i][j]+=(da[i][k]%MOD*b.da[k][j]%MOD)%MOD,c.da[i][j]%=MOD;
// 第一次把b.da[k][j] 打成da[k][j] T^T
}
return c;
} void print() {
for(int i=1;i<=n;i++){
printf("%d",da[i][1]);
for(int j=2;j<=m;j++)
printf(" %d",da[i][j]);
printf("\n");
}
} void mrd() {
n=rd(),m=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=rd();
} mat mul(mat b,long long d) {// a乘以b的d次方
mat c=*this;
for(;d;d>>=1) {
if(d&1) c=c*b;
b=b*b;
}
return c;
}
}; int main() {
long long num=rd();
mat a,b; a.n=1,a.m=2;
a.da[1][1]=0,a.da[1][2]=1;
b.n=b.m=2;
b.da[1][2]=b.da[2][1]=b.da[2][2]=1; // for(long long i=1;i<=x;i++) a=a*b;
// a.print(); // for(;num;num>>=1) {
// if(num&1) a=a*b;
// b=b*b;
// } a=a.mul(b,num); printf("%lld",a.da[1][1]);
return 0;
}

[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)的更多相关文章

  1. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  2. [LUOGU] P1962 斐波那契数列

    求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...

  3. 【luogu P1962 斐波那契数列】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1962 给你篇dalao的blog自己看吧,把矩阵快速幂的板子一改就OK #include <algor ...

  4. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  5. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  6. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  7. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  8. P1962 斐波那契数列 【矩阵快速幂】

    一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...

  9. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

随机推荐

  1. 神经网络入门游戏推荐BugBrain

    今天看到一款神经网络入门游戏.BugBrain.在游戏中,你能够通过连接神经元.设置神经元阈值等建造虫子的大脑,让瓢虫.蠕虫.蚂蚁等完毕各种任务.下载下来玩了玩,难度真不是入门级的= =! 真心佩服作 ...

  2. 剖析Mysql的InnoDB索引

    摘要: 本篇介绍下Mysql的InnoDB索引相关知识,从各种树到索引原理到存储的细节. InnoDB是Mysql的默认存储引擎(Mysql5.5.5之前是MyISAM,文档).本着高效学习的目的,本 ...

  3. 【数据结构与算法】(二) c 语言链表的简单操作

    // // main.c // testLink // // Created by lan on 16/3/6. // Copyright © 2016年 lan. All rights reserv ...

  4. OLR文件丢失的恢复

    11.2.0.1的RAC中,rac1和rac2 一.OLR有备份的情况 1.手动将rac1中的olr重命名,模拟丢失 mv rac1.olr rac1.olr.test 2.重新启动crs ./crs ...

  5. UVAlive 6560 - The Urge to Merge(状压dp)

    LA 6560 - The Urge to Merge option=com_onlinejudge&Itemid=8&page=show_problem&problem=45 ...

  6. Linux命令(四)——文件权限管理

    文件权限是指对文件的访问控制,即哪些用户或群组可以访问文件以及执行什么样的操作. 一.文件的权限 1.Linux文件类型 (1)普通文件:文本文件+数据文件+可执行的二进制文件. (2)目录文件:即文 ...

  7. luogu2774 方格取数问题 二分图最小权点覆盖集

    题目大意:在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,输出这些数之和的最大值. 思路:这种各个点之间互相排斥求最大值的题,往往需要利 ...

  8. oc20--继承2

    // // Phone.h #import <Foundation/Foundation.h> // 被继承的这个类我们称之为父类/ 超类 @interface Phone : NSObj ...

  9. 【Codeforces 258D】 Count Good Substrings

    [题目链接] http://codeforces.com/contest/451/problem/D [算法] 合并后的字符串一定是形如"ababa","babab&qu ...

  10. Linux&nbsp;Oracle服务启动&amp;停止脚本与开机自启动

    在CentOS 6.3下安装完Oracle 10g R2,重开机之后,你会发现Oracle没有自行启动,这是正常的,因为在Linux下安装Oracle的确不会自行启动,必须要自行设定相关参数,首先先介 ...