[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
输入样例#1:
5
输出样例#1:
5
输入样例#2:
10
输出样例#2:
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
嗯,用这个题来打个矩阵快速幂模板(~ ̄▽ ̄)~
code:
//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const long long MOD=1000000007;
const int MAX=3;
const int INF=0x3f3f3f3f;
long long rd() {//一开始写的快读是int的交了三回才发现 o(╥﹏╥)o
long long x=0;
int fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9'&&c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
struct mat{ //Matrix 矩阵
long long da[MAX][MAX];
int n,m;
mat(int x=1,int y=1) {
n=x,m=y;
memset(da,0,sizeof da);
}
void operator =(mat x) {
n=x.n,m=x.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=x.da[i][j];
}
mat operator *(mat b) { //注意:需a.m==b.n
mat c;
c.n=n;c.m=b.m;
for(int i=1;i<=c.n;i++)
for(int j=1;j<=c.m;j++) {
c.da[i][j]=0;
for(int k=1;k<=m;k++)
c.da[i][j]+=(da[i][k]%MOD*b.da[k][j]%MOD)%MOD,c.da[i][j]%=MOD;
// 第一次把b.da[k][j] 打成da[k][j] T^T
}
return c;
}
void print() {
for(int i=1;i<=n;i++){
printf("%d",da[i][1]);
for(int j=2;j<=m;j++)
printf(" %d",da[i][j]);
printf("\n");
}
}
void mrd() {
n=rd(),m=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=rd();
}
mat mul(mat b,long long d) {// a乘以b的d次方
mat c=*this;
for(;d;d>>=1) {
if(d&1) c=c*b;
b=b*b;
}
return c;
}
};
int main() {
long long num=rd();
mat a,b;
a.n=1,a.m=2;
a.da[1][1]=0,a.da[1][2]=1;
b.n=b.m=2;
b.da[1][2]=b.da[2][1]=b.da[2][2]=1;
// for(long long i=1;i<=x;i++) a=a*b;
// a.print();
// for(;num;num>>=1) {
// if(num&1) a=a*b;
// b=b*b;
// }
a=a.mul(b,num);
printf("%lld",a.da[1][1]);
return 0;
}
[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)的更多相关文章
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
- 【luogu P1962 斐波那契数列】 题解
题目链接:https://www.luogu.org/problemnew/show/P1962 给你篇dalao的blog自己看吧,把矩阵快速幂的板子一改就OK #include <algor ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- P1962 斐波那契数列 【矩阵快速幂】
一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
随机推荐
- 卷积神经网络(CNN)基础介绍
本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代. ...
- APP漏洞自动化扫描专业评测报告(中篇)
前言 上一篇中通过对阿里聚安全[1].360App漏洞扫描[2].腾讯金刚审计系统[3].百度移动云测试中心[4]以及AppRisk Scanner[5] 在收费情况.样本测试后的扫描时间对比和漏洞项 ...
- 安卓实现序列化之Parcelable接口
安卓实现序列化之Parcelable接口 1.实现序列化的方法: Android中实现序列化有两个选择:一是实现Serializable接口(是JavaSE本身就支持的) .一是实现Parcelabl ...
- C++一些知识难点
什么是"引用"?申明和使用"引用"要注意哪些问题? 答:引用就是某个目标变量的"别名"(alias).相应用的操作与对变量直接操作效果全然同 ...
- 翻译Beginning iOS 7 Development中文版
不会iOS开发好像真的说只是去,来本中文版的Beginning iOS 7 Development吧. 看了Beginning iOS 7 Development这本书,感觉蛮不错的.全英文的,没有中 ...
- POJ2689 Prime Distance 质数筛选
题目大意 求区间[L, R]中距离最大和最小的两对相邻质数.R<2^31, R-L<1e6. 总体思路 本题数据很大.求sqrt(R)的所有质数,用这些质数乘以j, j+1, j+2... ...
- Cracking the Coding Interview 5.2
Given a(decimal -e.g. 3.72)number that is passed in as a string, print the binary representation. If ...
- POJ 3620 DFS
题意: 给你n*m的矩形,有k个坏点 问最大坏点连通块的坏点数. 一发水题.. 裸的DFS // by SiriusRen #include <cstdio> #include <a ...
- [lua] future模式*协程
以下是lua实现的future模式.基于cocos客户端 local function param_pack( params, callback ) table.insert(params, call ...
- 基于HTML5陀螺仪实现ofo首页眼睛移动效果
最近用ofo小黄车App的时候,发现以前下方扫一扫变成了一个眼睛动的小黄人,觉得蛮有意思的,这里用HTML5仿一下效果. ofo眼睛效果 效果分析 从效果中不难看出,是使用陀螺仪事件实现的. 这里先来 ...