[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:
• f(1) = 1
• f(2) = 1
• f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数)
题目描述
请你求出 f(n) mod 1000000007 的值。
输入输出格式
输入格式:
·第 1 行:一个整数 n
输出格式:
第 1 行: f(n) mod 1000000007 的值
输入输出样例
输入样例#1:
5
输出样例#1:
5
输入样例#2:
10
输出样例#2:
55
说明
对于 60% 的数据: n ≤ 92
对于 100% 的数据: n在long long(INT64)范围内。
嗯,用这个题来打个矩阵快速幂模板(~ ̄▽ ̄)~
code:
//By Menteur_Hxy
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const long long MOD=1000000007;
const int MAX=3;
const int INF=0x3f3f3f3f;
long long rd() {//一开始写的快读是int的交了三回才发现 o(╥﹏╥)o
long long x=0;
int fla=1; char c=' ';
while(c>'9'|| c<'0') {if(c=='-') fla=-fla; c=getchar();}
while(c<='9'&&c>='0') x=x*10+c-'0',c=getchar();
return x*fla;
}
struct mat{ //Matrix 矩阵
long long da[MAX][MAX];
int n,m;
mat(int x=1,int y=1) {
n=x,m=y;
memset(da,0,sizeof da);
}
void operator =(mat x) {
n=x.n,m=x.m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=x.da[i][j];
}
mat operator *(mat b) { //注意:需a.m==b.n
mat c;
c.n=n;c.m=b.m;
for(int i=1;i<=c.n;i++)
for(int j=1;j<=c.m;j++) {
c.da[i][j]=0;
for(int k=1;k<=m;k++)
c.da[i][j]+=(da[i][k]%MOD*b.da[k][j]%MOD)%MOD,c.da[i][j]%=MOD;
// 第一次把b.da[k][j] 打成da[k][j] T^T
}
return c;
}
void print() {
for(int i=1;i<=n;i++){
printf("%d",da[i][1]);
for(int j=2;j<=m;j++)
printf(" %d",da[i][j]);
printf("\n");
}
}
void mrd() {
n=rd(),m=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
da[i][j]=rd();
}
mat mul(mat b,long long d) {// a乘以b的d次方
mat c=*this;
for(;d;d>>=1) {
if(d&1) c=c*b;
b=b*b;
}
return c;
}
};
int main() {
long long num=rd();
mat a,b;
a.n=1,a.m=2;
a.da[1][1]=0,a.da[1][2]=1;
b.n=b.m=2;
b.da[1][2]=b.da[2][1]=b.da[2][2]=1;
// for(long long i=1;i<=x;i++) a=a*b;
// a.print();
// for(;num;num>>=1) {
// if(num&1) a=a*b;
// b=b*b;
// }
a=a.mul(b,num);
printf("%lld",a.da[1][1]);
return 0;
}
[luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)的更多相关文章
- Luogu P1962 斐波那契数列(矩阵乘法模板)
传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...
- [LUOGU] P1962 斐波那契数列
求斐波那契第n项. [f(n-1) f(n)] * [0,1] = [f(n) f(n+1)] [1,1] 由此原理,根据矩阵乘法的结合律,用快速幂算出中间那个矩阵的n次方即可. 快速幂本质和普通快速 ...
- 【luogu P1962 斐波那契数列】 题解
题目链接:https://www.luogu.org/problemnew/show/P1962 给你篇dalao的blog自己看吧,把矩阵快速幂的板子一改就OK #include <algor ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Luogu 1962 斐波那契数列(矩阵,递推)
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- P1962 斐波那契数列 【矩阵快速幂】
一.题目 P1962 斐波那契数列 二.分析 比较基础的递推式转换为矩阵递推,这里因为$n$会超出$int$类型,所以需要用矩阵快速幂加快递推. 三.AC代码 1 #include <bits/ ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
随机推荐
- 经验总结18--EF改动关系,多对多
EF改动关系让我费事蛮多时间.能查的资料少,网上试了非常多方法都不正确. 最后还是自己研究出来了.在这里和大家分享下,有更好的方法也能够分享下. 首先说说我一般做改动功能时,前台传參数,后台使用对象接 ...
- 一、Redis 基础命令---总括
1.redis命令不区分大写和小写.可是KEY区分大写和小写. 2.redis-cli -h 127.0.0.1 -p 6379 依据IP/PORT链接服务端 3.redis-server --por ...
- python+Android+uiautomator的环境
Python+Android+uiautomator的环境搭建 Python 下载适合系统的版本并安装,安装时勾选把路径加入path 验证:windows下打开cmd输入python 出现以下界面说明 ...
- 利用Ajax调用controller方法并传递参数
一.背景由于近期工作需要将人脸识别功能与选课系统结合,但是对前端知识了解的很少,只能边做边学了,因此在这边把遇到的一些坑说明一下,希望能帮助到像我一样的初学者 二.具体内容这里采用框架为MVC,如果想 ...
- java.lang.NoClassDefFoundError: org/json/JSONException
问题: 解决办法:
- HTTP缓存和CDN缓存
一 http缓存 1.1缓存的分类: http中具有缓存功能的是:1.浏览器缓存. 2.缓存代理服务器. 1.2 什么是缓存: http缓存的是指:当Web请求抵达缓存时, 如果本地有“已缓存的”副 ...
- luogu4011 孤岛营救问题 分层图
关键词:分层图 状态压缩 最短路径 分层图:现在要求从起点到终点的最优路线,但受到手里拿着哪些钥匙的影响,最优路线不单纯了.因此,决定一个节点.一条边的存在的数中应当增加一个手中拿有钥匙的状态.这样就 ...
- Elo rating system(Elo 打分体系)
A.B 两个待比较.评价的对象,分别打分为 RA,RB,则各自获胜的期望值为: ⎧⎩⎨⎪⎪⎪⎪⎪⎪EA=11+10(RB−RA)/400.EB=11+10(RA−RB)/400. 不妨令 QA=10R ...
- Linux Shell Scripting Cookbook 读书笔记 5
sed,awk 1. sed (string editor) 使用-i可以将结果运用于原文件 sed 's/text1/text2/' file > newfile mv newfile fil ...
- PIE加载自定义服务数据详细介绍
这段时间我一直在研究如何用PIE加载在线地图服务,遇到了许多问题,多亏了技术员小姐姐的帮助,才让我能正确加载ArcGIS Online在线服务.天地图在线地图和谷歌在线地图.我是根据博客园PIE官方博 ...