Hive sql
1.DDL操作
1.1 建表
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
•CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常
•EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)
•LIKE 允许用户复制现有的表结构,但是不复制数据
•COMMENT可以为表与字段增加描述
•ROW FORMAT
DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。
•STORED AS
SEQUENCEFILE
| TEXTFILE
| RCFILE
| INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。
1.1.1 创建简单表
hive> CREATE TABLE pokes (foo INT, bar STRING);
1.1.2 创建外部表
CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT, page_url STRING, referrer_url STRING, ip STRING COMMENT 'IP Address of the User', country STRING COMMENT 'country of origination') COMMENT 'This is the staging page view table' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054' STORED AS TEXTFILE LOCATION '<hdfs_location>';
1.1.3 创建外部表
CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT, page_url STRING, referrer_url STRING, ip STRING COMMENT 'IP Address of the User', country STRING COMMENT 'country of origination') COMMENT 'This is the staging page view table' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054' STORED AS TEXTFILE LOCATION '<hdfs_location>';
1.1.4 创建分区表
CREATE TABLE par_table(viewTime INT, userid BIGINT, page_url STRING, referrer_url STRING, ip STRING COMMENT 'IP Address of the User') COMMENT 'This is the page view table' PARTITIONED BY(date STRING, pos STRING) ROW FORMAT DELIMITED ‘\t’ FIELDS TERMINATED BY '\n' STORED AS SEQUENCEFILE;
例:
create table student(id int,sname string)
partitioned by (sex string)
row format delimited
fields terminated by '-';
导入文件格式:
1-zhangsa-123
导入文件语法:
load data local inpath '/root/student2.txt' into table student partition(sex='male');
load data local inpath '/root/student2.txt' into table student partition(sex='female');
查询:
select * from student where sex='nan'; //sex='nan' 按照分区的名字查询 where语句可以是区条件也可以是字段值为条件
1.1.5 创建分桶表
CREATE TABLE par_table(viewTime INT, userid BIGINT,
page_url STRING, referrer_url STRING,
ip STRING COMMENT 'IP Address of the User')
COMMENT 'This is the page view table'
PARTITIONED BY(date STRING, pos STRING)
CLUSTERED BY(userid) SORTED BY(viewTime) INTO 32 BUCKETS
ROW FORMAT DELIMITED ‘\t’
FIELDS TERMINATED BY '\n'
STORED AS SEQUENCEFILE;
例:
create table student(sno int,sname string,sage int)
clustered by(sno)
sorted by(sno desc)
into 4 buckets
row format delimited
fields terminated by '-';
1.1.6 复制一个空表
CREATE TABLE empty_key_value_store LIKE key_value_store;
1.2 修改表
1.2.1 添加列
hive> ALTER TABLE invites ADD COLUMNS (new_col2 INT COMMENT 'a comment');
1.2.2 修改表名
hive> ALTER TABLE events RENAME TO 3koobecaf;
1.2.3 删除列
hive> DROP TABLE pokes;
1.2.4 增加、删除分区
增加:
ALTER TABLE table_name ADD [IF NOT EXISTS] partition_spec [ LOCATION 'location1' ]
partition_spec [ LOCATION 'location2' ] ...
partition_spec: : PARTITION (partition_col = partition_col_value, partition_col = partiton_col_value, ...)
删除:
ALTER TABLE table_name DROP partition_spec, partition_spec,...
1.3显示命令
show tables;
show databases;
show partitions ;
show functions
describe extended table_name dot col_name
2.DML元数据存储
2.1 向表内加载文件
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE]
INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
•Load 操作只是单纯的复制/移动操作,将数据文件移动到 Hive 表对应的位置。
•filepath
•相对路径,例如:project/data1
•绝对路径,例如: /user/hive/project/data1
•包含模式的完整 URI,例如:hdfs://namenode:9000/user/hive/project/data1
例如:
hive> LOAD DATA LOCAL INPATH '/root/pokes.txt' OVERWRITE INTO TABLE pokes;
2.2 加载本地数据,同时给定分区信息
•加载的目标可以是一个表或者分区。如果表包含分区,必须指定每一个分区的分区名
•filepath 可以引用一个文件(这种情况下,Hive 会将文件移动到表所对应的目录中)或者是一个目录(在这种情况下,Hive 会将目录中的所有文件移动至表所对应的目录中)
LOCAL关键字
•指定了LOCAL,即本地
•load 命令会去查找本地文件系统中的 filepath。如果发现是相对路径,则路径会被解释为相对于当前用户的当前路径。用户也可以为本地文件指定一个完整的 URI,比如:file:///user/hive/project/data1.
•load 命令会将 filepath 中的文件复制到目标文件系统中。目标文件系统由表的位置属性决定。被复制的数据文件移动到表的数据对应的位置
例如:加载本地数据,同时给定分区信息:
hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
• 没有指定LOCAL
如果 filepath 指向的是一个完整的 URI,hive 会直接使用这个 URI。 否则
•如果没有指定 schema 或者 authority,Hive 会使用在 hadoop 配置文件中定义的 schema 和 authority,fs.default.name 指定了 Namenode 的 URI
•如果路径不是绝对的,Hive 相对于 /user/ 进行解释。 Hive 会将 filepath 中指定的文件内容移动到 table (或者 partition)所指定的路径中
2.1.2 加载DFS数据,同时给定分区信息:
hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites PARTITION (ds='2008-08-15');
The above command will load data from an HDFS file/directory to the table. Note that loading data from HDFS will result in moving the file/directory. As a result, the operation is almost instantaneous.
OVERWRITE
•指定了OVERWRITE
•目标表(或者分区)中的内容(如果有)会被删除,然后再将 filepath 指向的文件/目录中的内容添加到表/分区中。
•如果目标表(分区)已经有一个文件,并且文件名和 filepath 中的文件名冲突,那么现有的文件会被新文件所替代。
2.1.3 将查询结果插入Hive表
•将查询结果插入Hive表
•将查询结果写入HDFS文件系统
•基本模式
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement
•多插入模式
FROM from_statement
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1
[INSERT OVERWRITE TABLE tablename2 [PARTITION ...] select_statement2] ...
•自动分区模式
INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement
2.1.4 将查询结果写入HDFS文件系统
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 SELECT ... FROM ...
FROM from_statement
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2]
•数据写入文件系统时进行文本序列化,且每列用^A 来区分,\n换行
2.1.5 INSERT INTO
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)]
select_statement1 FROM from_statement;
3.DQL操作:数据查询SQL
3.1 基本的Select 操作
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list [HAVING condition]]
[ CLUSTER BY col_list
| [DISTRIBUTE BY col_list] [SORT BY| ORDER BY col_list]
]
[LIMIT number]
•使用ALL和DISTINCT选项区分对重复记录的处理。默认是ALL,表示查询所有记录。DISTINCT表示去掉重复的记录
•Where 条件
•类似我们传统SQL的where 条件
•目前支持 AND,OR ,0.9版本支持between
•IN, NOT IN
•不支持EXIST ,NOT EXIST
ORDER BY与SORT BY的不同
•ORDER BY 全局排序,只有一个Reduce任务
•SORT BY 只在本机做排序
Limit
•Limit 可以限制查询的记录数
SELECT * FROM t1 LIMIT 5
•实现Top k 查询
•下面的查询语句查询销售记录最大的 5 个销售代表。
SET mapred.reduce.tasks = 1
SELECT * FROM test SORT BY amount DESC LIMIT 5
•REGEX Column Specification
SELECT 语句可以使用正则表达式做列选择,下面的语句查询除了 ds 和 hr 之外的所有列:
SELECT `(ds|hr)?+.+` FROM test
例如
按先件查询
hive> SELECT a.foo FROM invites a WHERE a.ds='<DATE>';
将查询数据输出至目录:
hive> INSERT OVERWRITE DIRECTORY '/tmp/hdfs_out' SELECT a.* FROM invites a WHERE a.ds='<DATE>';
将查询结果输出至本地目录:
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/local_out' SELECT a.* FROM pokes a;
选择所有列到本地目录:
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a;
hive> INSERT OVERWRITE TABLE events SELECT a.* FROM profiles a WHERE a.key < 100;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/reg_3' SELECT a.* FROM events a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_4' select a.invites, a.pokes FROM profiles a;
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT COUNT(1) FROM invites a WHERE a.ds='<DATE>';
hive> INSERT OVERWRITE DIRECTORY '/tmp/reg_5' SELECT a.foo, a.bar FROM invites a;
hive> INSERT OVERWRITE LOCAL DIRECTORY '/tmp/sum' SELECT SUM(a.pc) FROM pc1 a;
将一个表的统计结果插入另一个表中:
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT a.bar, count(1) WHERE a.foo > 0 GROUP BY a.bar;
hive> INSERT OVERWRITE TABLE events SELECT a.bar, count(1) FROM invites a WHERE a.foo > 0 GROUP BY a.bar;
JOIN
hive> FROM pokes t1 JOIN invites t2 ON (t1.bar = t2.bar) INSERT OVERWRITE TABLE events SELECT t1.bar, t1.foo, t2.foo;
将多表数据插入到同一表中:
FROM src
INSERT OVERWRITE TABLE dest1 SELECT src.* WHERE src.key < 100
INSERT OVERWRITE TABLE dest2 SELECT src.key, src.value WHERE src.key >= 100 and src.key < 200
INSERT OVERWRITE TABLE dest3 PARTITION(ds='2008-04-08', hr='12') SELECT src.key WHERE src.key >= 200 and src.key < 300
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/dest4.out' SELECT src.value WHERE src.key >= 300;
将文件流直接插入文件:
hive> FROM invites a INSERT OVERWRITE TABLE events SELECT TRANSFORM(a.foo, a.bar) AS (oof, rab) USING '/bin/cat' WHERE a.ds > '2008-08-09';
This streams the data in the map phase through the script /bin/cat (like hadoop streaming). Similarly - streaming can be used on the reduce side (please see the Hive Tutorial or examples)
3.2 基于Partition的查询
•一般 SELECT 查询会扫描整个表,使用 PARTITIONED BY 子句建表,查询就可以利用分区剪枝(input pruning)的特性
•Hive 当前的实现是,只有分区断言出现在离 FROM 子句最近的那个WHERE 子句中,才会启用分区剪枝
3.3 Join
join_table:
table_reference JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition
| table_reference LEFT SEMI JOIN table_reference join_condition table_reference:
table_factor
| join_table table_factor:
tbl_name [alias]
| table_subquery alias
| ( table_references ) join_condition:
ON equality_expression ( AND equality_expression )* equality_expression:
expression = expression Syntax
•Hive 只支持等值连接(equality joins)、外连接(outer joins)和(left semi joins)。Hive 不支持所有非等值的连接,因为非等值连接非常难转化到 map/reduce 任务
•LEFT,RIGHT和FULL OUTER关键字用于处理join中空记录的情况
•LEFT SEMI JOIN 是 IN/EXISTS 子查询的一种更高效的实现
•join 时,每次 map/reduce 任务的逻辑是这样的:reducer 会缓存 join 序列中除了最后一个表的所有表的记录,再通过最后一个表将结果序列化到文件系统
•实践中,应该把最大的那个表写在最后
join 查询时,需要注意几个关键点
•只支持等值join
•SELECT a.* FROM a JOIN b ON (a.id = b.id)
•SELECT a.* FROM a JOIN b
ON (a.id = b.id AND a.department = b.department)
•可以 join 多于 2 个表,例如
SELECT a.val, b.val, c.val FROM a JOIN b
ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
•如果join中多个表的 join key 是同一个,则 join 会被转化为单个 map/reduce 任务
LEFT,RIGHT和FULL OUTER
•例子
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)
•如果你想限制 join 的输出,应该在 WHERE 子句中写过滤条件——或是在 join 子句中写
•容易混淆的问题是表分区的情况
SELECT c.val, d.val FROM c LEFT OUTER JOIN d ON (c.key=d.key)
WHERE a.ds='2010-07-07' AND b.ds='2010-07-07‘
•如果 d 表中找不到对应 c 表的记录,d 表的所有列都会列出 NULL,包括 ds 列。也就是说,join 会过滤 d 表中不能找到匹配 c 表 join key 的所有记录。这样的话,LEFT OUTER 就使得查询结果与 WHERE 子句无关
•解决办法
SELECT c.val, d.val FROM c LEFT OUTER JOIN d
ON (c.key=d.key AND d.ds='2009-07-07' AND c.ds='2009-07-07')
LEFT SEMI JOIN
•LEFT SEMI JOIN 的限制是, JOIN 子句中右边的表只能在 ON 子句中设置过滤条件,在 WHERE 子句、SELECT 子句或其他地方过滤都不行
SELECT a.key, a.value
FROM a
WHERE a.key in
(SELECT b.key
FROM B);
可以被重写为:
SELECT a.key, a.val
FROM a LEFT SEMI JOIN b on (a.key = b.key)
UNION ALL
•用来合并多个select的查询结果,需要保证select中字段须一致
select_statement UNION ALL select_statement UNION ALL select_statement ...
4.SQL与HQL
4.1、Hive不支持等值连接
•SQL中对两表内联可以写成:
select * from dual a,dual b where a.key = b.key;
•Hive中应为
select * from dual a join dual b on a.key = b.key;
而不是传统的格式:
SELECT t1.a1 as c1, t2.b1 as c2FROM t1, t2 WHERE t1.a2 = t2.b2
4.2、分号字符
•分号是SQL语句结束标记,在HiveQL中也是,但是在HiveQL中,对分号的识别没有那么智慧,例如:
select concat(key,concat(';',key)) from dual;
•但HiveQL在解析语句时提示:
FAILED: Parse Error: line 0:-1 mismatched input '<EOF>' expecting ) in function specification
•解决的办法是,使用分号的八进制的ASCII码进行转义,那么上述语句应写成:
select concat(key,concat('\073',key)) from dual;
4.3、IS [NOT] NULL
SQL中null代表空值, 值得警惕的是, 在HiveQL中String类型的字段若是空(empty)字符串, 即长度为0, 那么对它进行IS NULL的判断结果是False.
4.4、Hive不支持将数据插入现有的表或分区中,
仅支持覆盖重写整个表,示例如下:
INSERT OVERWRITE TABLE t1
SELECT * FROM t2; INSERT OVERWRITE TABLE t1SELECT * FROM t2;
4.5、hive不支持INSERT INTO, UPDATE, DELETE操作
这样的话,就不要很复杂的锁机制来读写数据。
INSERT INTO syntax is only available starting in version 0.8。INSERT INTO就是在表或分区中追加数据。
4.6、hive支持嵌入mapreduce程序,来处理复杂的逻辑
如:
FROM ( MAP doctext USING 'python wc_mapper.py' AS (word, cnt) FROM docs CLUSTER BY word ) a REDUCE word, cnt USING 'python wc_reduce.py'; FROM ( MAP doctext USING 'python wc_mapper.py' AS (word, cnt) FROM docs CLUSTER BY word ) a REDUCE word, cnt USING 'python wc_reduce.py'; hive 支持mapreduce
--doctext: 是输入
--word, cnt: 是map程序的输出
--CLUSTER BY: 将wordhash后,又作为reduce程序的输入
并且map程序、reduce程序可以单独使用,如:
SELECT sessionid, tstamp, data DISTRIBUTE BY sessionid SORT BY tstamp ) a REDUCE sessionid, tstamp, data USING 'session_reducer.sh'; FROM ( FROM session_table SELECT sessionid, tstamp, data DISTRIBUTE BY sessionid SORT BY tstamp ) a REDUCE sessionid, tstamp, data USING 'session_reducer.sh'; map
--DISTRIBUTE BY: 用于给reduce程序分配行数据
4.7、hive支持将转换后的数据直接写入不同的表,还能写入分区、hdfs和本地目录。
这样能免除多次扫描输入表的开销。
FROM t1 INSERT OVERWRITE TABLE t2 SELECT t3.c2, count(1) FROM t3 WHERE t3.c1 <= 20 GROUP BY t3.c2 INSERT OVERWRITE DIRECTORY '/output_dir' SELECT t3.c2, avg(t3.c1) FROM t3 WHERE t3.c1 > 20 AND t3.c1 <= 30 GROUP BY t3.c2 INSERT OVERWRITE LOCAL DIRECTORY '/home/dir' SELECT t3.c2, sum(t3.c1) FROM t3 WHERE t3.c1 > 30 GROUP BY t3.c2; insert分区
Hive sql的更多相关文章
- 【hive】——Hive sql语法详解
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查 ...
- Hive SQL 监控系统 - Hive Falcon
1.概述 在开发工作当中,提交 Hadoop 任务,任务的运行详情,这是我们所关心的,当业务并不复杂的时候,我们可以使用 Hadoop 提供的命令工具去管理 YARN 中的任务.在编写 Hive SQ ...
- hive sql 语法详解
Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件映射为一张数据库表,并提供完整的SQL查 ...
- Hive sql 语法解读
一. 创建表 在官方的wiki里,example是这种: Sql代码 CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name d ...
- Spark(Hive) SQL中UDF的使用(Python)
相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内 ...
- Spark(Hive) SQL数据类型使用详解(Python)
Spark SQL使用时需要有若干“表”的存在,这些“表”可以来自于Hive,也可以来自“临时表”.如果“表”来自于Hive,它的模式(列名.列类型等)在创建时已经确定,一般情况下我们直接通过Spar ...
- 由“Beeline连接HiveServer2后如何使用指定的队列(Yarn)运行Hive SQL语句”引发的一系列思考
背景 我们使用的HiveServer2的版本为0.13.1-cdh5.3.2,目前的任务使用Hive SQL构建,分为两种类型:手动任务(临时分析需求).调度任务(常规分析需求),两者均通过我们的 ...
- Hive SQL运行状态监控(HiveSQLMonitor)
引言 目前数据平台使用Hadoop构建,为了方便数据分析师的工作,使用Hive对Hadoop MapReduce任务进行封装,我们面对的不再是一个个的MR任务,而是一条条的SQL语句.数据平台内部 ...
- Hadoop Hive sql语法详解
Hadoop Hive sql语法详解 Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构 化的数据文件 ...
- 【甘道夫】使用HIVE SQL实现推荐系统数据补全
需求 在推荐系统场景中,假设基础行为数据太少,或者过于稀疏,通过推荐算法计算得出的推荐结果非常可能达不到要求的数量. 比方,希望针对每一个item或user推荐20个item,可是通过计算仅仅得到8个 ...
随机推荐
- 程序错误通常有2种,一种是运行时错误,这种错误ide会抛出异常,我们可以根据异常寻找问题.
1.程序错误通常有2种,一种是运行时错误,这种错误ide会抛出异常,我们可以根据异常寻找问题. 2.可以根据异常寻找问题. 3.可以根据异常寻找问题
- CSS3 timing-function: steps()介绍
在应用 CSS3 渐变/动画时.有个控制时间的属性 <timing-function>.它的取值中除了经常使用到的三次贝塞尔曲线以外,还有个steps() 函数. steps 函数指定了一 ...
- 全栈JavaScript之路( 二十 )HTML5 插入 html标记 ( 二 )insertAdjacentHTML
insertAdjacentHTML(), 这种方法也是在IE中最早出现的.如今已纳入html5规范,它接受两个參数,一个是下列的标记之中的一个,一个是要写入的 html 代码文本. beforeb ...
- event.currentTarget与event.target的差别介绍
event.currentTarget与event.target的差别想大家在使用的时候不是非常在意.本文以測试代码来解说它门之间的不同.即,event.currentTarget指向事件所绑定的元素 ...
- Swift学习——变量var和let常量的用法(一)
Swift中的变量var和let常量 首先介绍一下Swift中的 var 和 let (1)var 是 variable的缩写形式,是变量的意思 ,是可改变的.并非数据类型 比如: 注意每一个语句后面 ...
- 【小超_Android】android上开源的酷炫的交互动画和视觉效果:Interactive-animation
1.交互篇 2.视觉篇 交互篇 1.SlidingUpPanelLayout 项目介绍:他的库提供了一种简单的方式来加入一个可拖动滑动面板(由谷歌音乐推广,谷歌地图和Rdio)你的Android应用程 ...
- java基础开发—jstl标签库
在DRP项目中.接触到了JSTL标签库. 在未使用Jstl之前,我们使用JSP脚本实现一些声明或是表达式任务,做一些业务相关操作时,须要在页面中嵌入大量的java代码.在DRP项目开发前期.使用jsp ...
- Linux 服务具体解释
acpid ACPI(全 称 Advanced Configuration and Power Interface)服务是电源管理接口. 建议全部的笔记本用户开启它. 一些server可能不须要 ac ...
- 点击TButton后的执行OnClick和OnMouseDown两个事件的过程(其实是通过WM_COMMAND执行程序员的代码)
问题的来源:在李维的<深入浅出VCL>一书中提到了点击TButton会触发WM_COMMAND消息,正是它真正执行了程序员的代码.也许是我比较笨,没有理解他说的含义.但是后来经过追踪代码和 ...
- 修改android手机文件权限
修改android手机文件权限 默认情况下,一个应用肯定是读取不了另外一个应用的数据的,因为权限不够.但是我们一定要读,怎么办? 修改我们要读取文件的权限. Android是基于Linux的,所以修改 ...