[BZOJ 2395] Time is money
Link:
Solution:
算是一类比较经典的模型:
即对于一类经典问题,每点由1个权值化为2个权值,最终求$sigma(val_1)*sigma(val_2)$
对于此题,
设每棵生成树为坐标系上的一个点,$sigma(x_i)$为横坐标,$sigma(y_i)$为纵坐标。
则问题转化为求一个点,使得$xy=k$最小。
即,使过这个点的反比例函数$y=k/x$最接近坐标轴
算法如下图:
(1):求得分别距$x$轴和$y$轴最近的生成树(点):$A$、$B$(分别按x权值和y权值做最小生成树即可)。
(2)寻找一个在$AB$的靠近原点一侧的且离$AB$最远的点$C$。
(3)递归地分别往$AC$、$BC$靠近原点的一侧找。递归边界:该侧没有点了。
剩下来就是一些寻找$C$点实现细节了:
由于$C$离$AB$最远,所以$S\Delta ABC$面积最大。
因此最小化$\vec{AB} \times \vec{AC}$即可(此时叉积为负)
化简一下式子,将每个点的权值修改为 $y[i]*(Bx-Ax)+x[i]*(Ay-By)$ 做最小生成树,找到的是$C$。
Code:
//by NewErA
#include <bits/stdc++.h> using namespace std;
typedef long long ll; const int MAXN=205;
const int MAXM=1e4+5;
struct Vector
{
int x,y;
Vector(const int &A,const int &B){x=A;y=B;}Vector(){}
};
struct edge
{
int to,from,c,t,w;
}e[MAXM];
bool cmp(edge x,edge y){return x.w<y.w;}
Vector operator - (const Vector &a,const Vector &b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator + (const Vector &a,const Vector &b){return Vector(a.x+b.x,a.y+b.y);}
int Cross(const Vector &a,const Vector &b){return a.x*b.y-a.y*b.x;} int n,m,f[MAXN],cnt=0;
Vector res=Vector(1e9,1e9),minc,mint; int find(int x){return f[x]==x?x:f[x]=find(f[x]);} Vector Kruscal() //求解最小生成树
{
for(int i=0;i<=n;i++) f[i]=i;
Vector cur=Vector(0,0);cnt=0; for(int i=1;i<=m;i++)
{
int fx=find(e[i].from),fy=find(e[i].to);
if(fx!=fy)
{
cnt++;f[fx]=fy;
cur.x+=e[i].c;cur.y+=e[i].t;
if(cnt==n-1) break;
}
} ll P1=(ll)res.x*res.y,P2=(ll)cur.x*cur.y; //记得开long long
if(P1>P2 || (P1==P2 && res.x>cur.x))
res=cur;
return cur;
} void Solve(Vector A,Vector B)
{
for(int i=1;i<=m;i++)
e[i].w=e[i].c*(A.y-B.y)+e[i].t*(B.x-A.x); //将边权加以转化
sort(e+1,e+m+1,cmp);
Vector C=Kruscal();
if(Cross(B-A,C-A)>=0) return; //终止条件:叉积大于等于0
Solve(A,C);Solve(C,B);
} int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d%d%d%d",&e[i].from,&e[i].to,&e[i].c,&e[i].t); for(int i=1;i<=m;i++) e[i].w=e[i].c;
sort(e+1,e+m+1,cmp);minc=Kruscal(); for(int i=1;i<=m;i++) e[i].w=e[i].t;
sort(e+1,e+m+1,cmp);mint=Kruscal(); Solve(minc,mint);
printf("%d %d",res.x,res.y); return 0;
}
Review:
这类模型一般很好识别,就当模板练了吧
[BZOJ 2395] Time is money的更多相关文章
- bzoj 2395 [Balkan 2011]Timeismoney——最小乘积生成树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 如果把 \( \sum t \) 作为 x 坐标,\( \sum c \) 作为 y ...
- BZOJ 2395 [Balkan 2011]Timeismoney(最小乘积生成树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2395 [题目大意] 给出一张无向图,每条边上有a,b两个值,求生成树, 使得suma* ...
- bzoj 2395 Timeismoney —— 最小乘积生成树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2395 参考博客:https://www.cnblogs.com/autsky-jadek/p ...
- 【BZOJ 2395】Time is money
题目大意有n个城市(编号从0..n-1),m条公路(双向的),从中选择n-1条边,使得任意的两个城市能够连通,一条边需要的c的费用和t的时间,定义一个方案的权值v=n-1条边的费用和*n-1条边的时间 ...
- BZOJ 2395 [Balkan 2011]Time is money
题面 题解 将\(\sum_i c_i\)和\(\sum_i t_i\)分别看做分别看做\(x\)和\(y\),投射到平面直角坐标系中,于是就是找\(xy\)最小的点 于是可以先找出\(x\)最小的点 ...
- bzoj 2395: [Balkan 2011]Timeismoney【计算几何+最小生成树】
妙啊,是一个逼近(?)的做法 把两个值最为平面上的点坐标,然后答案也是一个点. 首先求出可能是答案的点xy分别是按照c和t排序做最小生成树的答案,然后考虑比这两个点的答案小的答案,一定在xy连线靠近原 ...
- @bzoj - 2395@ [Balkan 2011]Timeismoney
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有n个城市(编号从0..n-1),m条公路(双向的),从中选择n ...
- 【BZOJ】2395: [Balkan 2011]Timeismoney
题解 最小乘积生成树! 我们把,x的总和和y的总和作为x坐标和y左边,画在坐标系上 我们选择两个初始点,一个是最靠近y轴的A,也就是x总和最小,一个是最靠近x轴的B,也就是y总和最小 连接两条直线,在 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
随机推荐
- [学习笔记]可持久化数据结构——数组、并查集、平衡树、Trie树
可持久化:支持查询历史版本和在历史版本上修改 可持久化数组 主席树做即可. [模板]可持久化数组(可持久化线段树/平衡树) 可持久化并查集 可持久化并查集 主席树做即可. 要按秩合并.(路径压缩每次建 ...
- UVA 11995 STL 使用
There is a bag-like data structure, supporting two operations: 1 x Throw an element x into the bag. ...
- B. Minimum Ternary String (这个B有点狠)
B. Minimum Ternary String time limit per test 1 second memory limit per test 256 megabytes input sta ...
- barba 页面渲染
a.css html, body { padding:; margin: 0 } ol.menu { width: 100%; text-align: left; padding: 0 !import ...
- (转)Notepad++
包括notepad++的详细的安装过程,插件使用说明,技巧…… crifan http://www.crifan.com/files/doc/docbook/rec_soft_npp/release/ ...
- 问题总结——window平台下grunt\bower安装后无法运行的问题
一.问题: 安装grunt或者bower后,在cmd控制台运行grunt -version 或者 bower -v会出现:“xxx不是内部或外部命令,也不是可运行的程序或批处理文件”,
- 【spoj8222-Substrings】sam求子串出现次数
http://acm.hust.edu.cn/vjudge/problem/28005 题意:给一个字符串S,令F(x)表示S的所有长度为x的子串中,出现次数的最大值.求F(1)..F(Length( ...
- 【STSRM12】夏令营
[题意]n个数划分成k段,每段的价值为段内不同数字的数量,求最大总价值 [算法]DP+线段树 [题解] f[i][j]表示前i个数字划分成j段的最大价值. f[i][j]=max(f[k][j-1]+ ...
- python函数对象和闭包
关于函数对象和闭包 闭包(closure)是函数式编程的重要的语法结构.不同的语言实现闭包的方式不同.Python以函数对象为基础,为闭包这一语法结构提供支持的 (我们在特殊方法与多范式中,已经多次看 ...
- logging模块的使用
# -*- coding: utf-8 -*- import os import time import logging import sys log_dir1=os.path.join(os.pat ...