[CTSC2017]吉夫特(Lucas定理,DP)
送70分,预处理组合数是否为偶数即可。
剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数。
这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接枚举子集即可。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,mod=;
int n,ans,a[N],f[N],pos[N];
void up(int &x,int y){ x+=y; if (x>=mod) x-=mod; } int main(){
freopen("gift.in","r",stdin);
freopen("gift.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%d",&a[i]),pos[a[i]]=i,f[a[i]]=;
rep(i,,n) for (int s=(a[i]-)&a[i]; s; s=(s-)&a[i])
if (pos[s]>i) up(f[s],f[a[i]]);
rep(i,,n) up(ans,f[a[i]]);
printf("%d\n",(ans-n+mod)%mod);
return ;
}
[CTSC2017]吉夫特(Lucas定理,DP)的更多相关文章
- 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)
题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...
- bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...
- BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...
- 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP
题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...
- HDU 5794 A Simple Chess Lucas定理+dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...
- [CTSC2017][bzoj4903] 吉夫特 [状压dp+Lucas定理]
题面 传送门 思路 一句话题意: 给出一个长度为 n 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 a和 b (b 在 a 前面),$C_a^b mod 2=1$,答案 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
随机推荐
- Cube 找规律
这道题我们经过简单的推测便可得知3个之前特判,四个之后就成为了一般状况,就是我们每侧都是走整个整个的|_|之后零的走|||. 考试的时候包括平时做题,许多正确的感性比理性证明要强得多. #includ ...
- js保存用户名与密码
<script> window.onload = function(){ var oForm = document.getElementById('loginForm'); ...
- poj 1523 割点 tarjan
Description Consider the two networks shown below. Assuming that data moves around these networks on ...
- HDU 3446 有贪心思想的01背包
Proud Merchants Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) ...
- sysctl -P net.bridge.bridge-nf-call-ip6tables报错解决办法
问题症状 修改 linux 内核文件 #vi /etc/sysctl.conf后执行sysctl -P 报错 error: "net.bridge.bridge-nf-call-ip6ta ...
- [CVPR2017]Online Video Object Segmentation via Convolutional Trident Network
基于三端卷积网络的在线视频目标分割 针对半监督视频目标分割任务,作者采取了和MaskTrace类似的思路,以optical flow为主. 本文亮点在于: 1. 使用共享backbone,三输出的自编 ...
- 状压dp的题目列表 (一)
状压dp的典型的例子就是其中某个数值较小. 但是某个数值较小也不一定是状压dp,需要另外区分的一种题目就是用暴力解决的题目,例如UVA818 紫书215 题目列表: ①校长的烦恼 UVA10817 紫 ...
- 【BZOJ2326】【HNOI2011】数学作业 [矩阵乘法][DP]
数学作业 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 输入文件只有一行为用空 ...
- asp单页面301跳转
<% Response.Status="301 Moved Permanently"Response.AddHeader "Location", &quo ...
- bzoj 2819 博弈论
我们可以把 n为偶数的时候,n*n的棋盘看成若干个不相交的2*1的格子,那么对于每个2*1的格子,如果先手选了其中的一个,另一个人都可以选另一个,所以最后使先手没有可以选的格子,先手必败(这里的先手并 ...