[CTSC2017]吉夫特(Lucas定理,DP)
送70分,预处理组合数是否为偶数即可。
剩下的数据,根据Lucas定理的推论可得当且仅当n&m=n的时候,C(n,m)为奇数。
这样就可以直接DP了,对于每个数,考虑它对后面的数的影响即可,直接枚举子集即可。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,mod=;
int n,ans,a[N],f[N],pos[N];
void up(int &x,int y){ x+=y; if (x>=mod) x-=mod; } int main(){
freopen("gift.in","r",stdin);
freopen("gift.out","w",stdout);
scanf("%d",&n);
rep(i,,n) scanf("%d",&a[i]),pos[a[i]]=i,f[a[i]]=;
rep(i,,n) for (int s=(a[i]-)&a[i]; s; s=(s-)&a[i])
if (pos[s]>i) up(f[s],f[a[i]]);
rep(i,,n) up(ans,f[a[i]]);
printf("%d\n",(ans-n+mod)%mod);
return ;
}
[CTSC2017]吉夫特(Lucas定理,DP)的更多相关文章
- 洛谷P3773 [CTSC2017]吉夫特(Lucas定理,dp)
题意 满足$b_1 < b_2 < \dots < b_k$且$a_{b_1} \geqslant a_{b_2} \geqslant \dots \geqslant a_{b_k} ...
- bzoj4903 & loj2264 [Ctsc2017]吉夫特 Lucas 定理+状压DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4903 https://loj.ac/problem/2264 http://uoj.ac/pr ...
- BZOJ.4903.[CTSC2017]吉夫特(Lucas DP)
题目链接 首先\(C(n,m)\)为奇数当且仅当\(n\&m=m\). 简要证明: 因为是\(mod\ 2\),考虑Lucas定理. 在\(mod\ 2\)的情况下\(C(n,m)\)最后只会 ...
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...
- 【CTSC2017】【BZOJ4903】吉夫特 卢卡斯定理 DP
题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2 ...
- HDU 5794 A Simple Chess Lucas定理+dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...
- [CTSC2017][bzoj4903] 吉夫特 [状压dp+Lucas定理]
题面 传送门 思路 一句话题意: 给出一个长度为 n 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 a和 b (b 在 a 前面),$C_a^b mod 2=1$,答案 ...
- loj 300 [CTSC2017]吉夫特 【Lucas定理 + 子集dp】
题目链接 loj300 题解 orz litble 膜完题解后,突然有一个简单的想法: 考虑到\(2\)是质数,考虑Lucas定理: \[{n \choose m} = \prod_{i = 1} { ...
随机推荐
- watch用法小记
By francis_hao Jun 30,2017 watch:周期性的执行一个一个程序,并全屏显示输出 概述 watch [options] command 描述 watch重复的运 ...
- 如何使用Navicat恢复数据库脚本
Navicat 可以做数据库备份,当然也可以做数据库脚本恢复了.操作很简单. 1.连接需要恢复的数据库.鼠标右键点击,选择[运行SQL文件] 2.在弹出的窗口中选择sql文件,继续下一步即可. 余不赘 ...
- wget、yum、rpm、apt-get区别
wget 类似于迅雷,是一种下载工具, 通过HTTP.HTTPS.FTP三个最常见的TCP/IP协议下载,并可以使用HTTP代理 名字是World Wide Web”与“get”的结合. yum: 是 ...
- bzoj 3456 城市规划 多项式求逆+分治FFT
城市规划 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1091 Solved: 629[Submit][Status][Discuss] Desc ...
- 7月23号day15总结
数据清洗完成之后开始编写前端,通过spring框架将清洗后数据库中的数据显示在页面中. 框架的搭建和js的使用都在学习阶段,
- CSS学习之float解析
转自:http://www.w3cplus.com/css/float.html 一.float是什么? float即为浮动,在CSS中的作用是使元素脱离正常的文档流并使其移动到其父元素的“最左边”或 ...
- js如何弹出新窗口
js如何弹出新窗口 时间:2012-4-22 弹出新窗口也是在网页设计中会经常用到的,其用法也很简单,是通过调用javascript的内置函数windows.open来产生的. window.ope ...
- c++ 批量初始化数组 fill和fill_n函数的应用
转自c++ 如何批量初始化数组 fill和fill_n函数的应用 std::fill(a+,a+,0x3f3f3f3f);///从下标2到下标10 前闭后开 共8个 std::fill_n(a+,,0 ...
- 【BZOJ4080】【WF2014】Sensor Network [随机化]
Sensor Network Time Limit: 2 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 魔法炮来到了帝都 ...
- #error#storyboard#xib#解决方案
https://www.evernote.com/shard/s227/sh/cad7d5f5-8e81-4b3b-908f-5d8eee7d11e2/928786149cf9a103a74626 ...