Problem of Precision

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1375    Accepted Submission(s): 826

Problem Description
Input
The
first line of input gives the number of cases, T. T test cases follow,
each on a separate line. Each test case contains one positive integer n.
(1 <= n <= 10^9)
Output
For each input case, you should output the answer in one line.
Sample Input
3
1
2
5
Sample Output
9 97 841
【分析】

这个题目算是矩阵快速幂的比较难推的一个题目。题目要求 (sqrt(2)+sqrt(3))的 2^n并%1024,要求出值来并不难,构造矩阵即可,但是要mod1024就有问题了,小数不能直接mod,但是如果你取整之后再mod,结果绝逼出问题,因为浮点数的精度问题。

所以从斌牛的博客上看到如此推算,推算第一块不难,而且很容易求出Xn 和 Yn,但是问题又出来了,要是求出来后,直接用(int)(Xn+Yn*sqrt(6))%1024,又会出问题,还是浮点数取整问题,我一开始就这么算的,导致结果奇葩。看来在mod的时候有浮点数要格外注意,直接处理的话,不管怎么取整,都会出问题。

所以分割线下面的推算就避开了这个问题,这个确实好难想到,通过变换一下,得到最终的结果必定是2Xn-(0.101...)^n,因为最终mod是用不大于浮点数的最大整数在mod,所以最终结果就是2Xn-1.第二条确实好难想到!

题解转载于 http://www.cnblogs.com/kkrisen/p/3437710.html;

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
using namespace std;
typedef long long ll;
const ll N = ; ll f1,f2,k;
ll mod = ;
ll n; struct Fast_Matrax {
ll a[N][N];
Fast_Matrax() {
memset(a,,sizeof(a));
}
void init() {
for(int i=; i<N; i++)
for(int j=; j<N; j++)
a[i][j]=(i==j);
}
Fast_Matrax operator * (const Fast_Matrax &B)const {
Fast_Matrax C;
for(int i=; i<N; i++)
for(int k=; k<N; k++)
for(int j=; j<N; j++)
C.a[i][j]=(C.a[i][j]+1LL*a[i][k]*B.a[k][j]%mod+mod)%mod;
return C;
}
Fast_Matrax operator ^ (const ll &t)const {
Fast_Matrax A=(*this),res;
res.init();
ll p=t;
while(p) {
if(p&)res=res*A;
A=A*A;
p>>=;
}
return res;
}
} ans,tmp,x;
int main() {
x.a[][]=;x.a[][]=;
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
if(n<=){
puts("");
}
else {
tmp.a[][]=;tmp.a[][]=;
tmp.a[][]=;tmp.a[][]=;
ans=(tmp^(n-))*x;
printf("%lld\n",(*ans.a[][]-)%mod);
}
}
return ;
}

HDU 2256 Problem of Precision (矩阵快速幂)(推算)的更多相关文章

  1. HDU 2256 Problem of Precision (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256 最重要的是构建递推式,下面的图是盗来的.貌似这种叫共轭数. #include <iostr ...

  2. HDU 2256 Problem of Precision(矩阵高速幂)

    题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...

  3. HDU 2256 Problem of Precision(矩阵)

    Problem of Precision [题目链接]Problem of Precision [题目类型]矩阵 &题解: 参考:点这里 这题做的好玄啊,最后要添加一项,之后约等于,但是有do ...

  4. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  5. HDU 2256 Problem of Precision 数论矩阵快速幂

    题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...

  6. HDU 2256 Problem of Precision( 矩阵快速幂 )

    链接:传送门 题意:求式子的值,并向下取整 思路: 然后使用矩阵快速幂进行求解 balabala:这道题主要是怎么将目标公式进行化简,化简到一个可以使用现有知识进行解决的一个过程!菜的扣脚...... ...

  7. HDU 2256Problem of Precision(矩阵快速幂)

    题意 求$(\sqrt{2} + \sqrt{3})^{2n} \pmod {1024}$ $n \leqslant 10^9$ Sol 看到题解的第一感受:这玩意儿也能矩阵快速幂??? 是的,它能q ...

  8. hdu 2256 Problem of Precision

    点击打开hdu 2256 思路: 矩阵快速幂 分析: 1 题目要求的是(sqrt(2)+sqrt(3))^2n %1024向下取整的值 3 这里很多人会直接认为结果等于(an+bn*sqrt(6))% ...

  9. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

随机推荐

  1. thymeleaf支持java8的日期实例

    一.实体 @Entity public class Customer { @Id @GenericGenerator(name="generator",strategy = &qu ...

  2. [AT2558]Many Moves

    题目大意:有$n$个位置$1,2,\dots n$:你有两个棋子$A$和$B$,你要进行$q$次操作,第$i$次操作给定一个$x_i$,你要选择一个棋子移动到$x_i$:求两个棋子最小移动的步数之和. ...

  3. Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路

    首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...

  4. volatile的原理分析

    前言:Volatile作为一个多线程开发中的强有力的轻量级的线程协助工具,在实际编程中随处可见,它比synchronized更加轻量和方便,消耗的资源更少,了解Volatile对后面了解多线程有很重要 ...

  5. VS2010 VC Project的default Include设置

    在IDE中,打开View->Other Windows->Property Manager.展开树形后,你会发现一个名为“Microsoft.Cpp.Win32.user”的项目(如下图) ...

  6. 如何解决DuplicateFileException: Duplicate files copied in APK问题

    问题:有重复的文件存在APK里 解决方案:在Module里的build.gradle中设置忽略此重复文件即可.

  7. java消息中间件入门

    消息中间件来解耦服务调用 比如1个登录系统,登录的话需要调用很多系统的其他服务,如果中间调用失败,可能会导致登录信息一致无法返回,同时也增加了系统的耦合度.而用消息中间件的话,则是不发送服务到其他系统 ...

  8. 【BZOJ5005】乒乓游戏 [线段树][并查集]

    乒乓游戏 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 5 1 1 5 1 5 11 2 ...

  9. 【BZOJ 3907】网格(Catalan数)

    题目链接 这个题推导公式跟\(Catalan\)数是一样的,可得解为\(C_{n+m}^n-C_{n+m}^{n+1}\) 然后套组合数公式\(C_n^m=\frac{n!}{m!(n-m)!}\) ...

  10. 破解wifi时遇到rtl8187 - [phy1]SIOCSIFFLAGS: Name not unique on network

    当我使用我的ubuntu利用aircrack-ng套件进行wifi破解时 遇到如下问题 rtl8187 - [phy1]SIOCSIFFLAGS: Name not unique on network ...