1875: [SDOI2009]HH去散步

Time Limit: 20 Sec Memory Limit: 64 MB

Submit: 932 Solved: 424

[Submit][Status][Discuss]

Description

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走。就是散步。就是在一定的时间 内,走过一定的距离。 可是同一时候HH又是个喜欢变化的人,所以他不会立马沿着刚刚走来的路走回。 又由于HH是个喜欢变化的人,所以他每天走过的路径都不全然一样,他想知道他到底有多 少种散步的方法。 如今给你学校的地图(如果每条路的长度都是一样的都是1),问长度为t。从给定地 点A走到给定地点B共同拥有多少条符合条件的路径

Input

第一行:五个整数N,M,t,A,B。

当中N表示学校里的路口的个数,M表示学校里的 路的条数。t表示HH想要散步的距离,A表示散步的出发点,而B则表示散步的终点。 接下来M行。每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。数据保证Ai = Bi。但 不保证随意两个路口之间至多仅仅有一条路相连接。

路口编号从0到N − 1。

同一行内全部数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。 答案模45989。

Output

一行。表示答案。

Sample Input

4 5 3 0 0

0 1

0 2

0 3

2 1

3 2

Sample Output

4

HINT

对于30%的数据。N ≤ 4,M ≤ 10,t ≤ 10。

对于100%的数据。N ≤ 20,M ≤ 60。t ≤ 230。0 ≤ A,B

Source

Day1

思路:对于这道题我们能够保存f[k][i][j]表示走了k步。经过边i到达了j

那么显然对于这个转移。我们就能够用矩阵乘法来优化了。

由于有重边并且不能连着走同样的边,所以我们把无向边拆成两条有向边就能解决问题了。

建立一个1* (2*m)的矩阵和一个(2 * m) * (2 * m)的矩阵就能够了。

最后再把从起点出去的边和进入终点的边Σ一下就好了。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define D 45989
int n,m,t,A,B,e1[30][70],e2[30][70],a[150][150],ans[150][150],c[150][150];
bool f=true,pd[150][150];
struct S{int st,en;}aa[150];
int main()
{
int i,j,x,y,k;
scanf("%d%d%d%d%d",&n,&m,&t,&A,&B);
A+=1;B+=1;
memset(pd,1,sizeof(pd));
for(i=1;i<=m;++i){
scanf("%d%d",&x,&y);
x+=1;y+=1;
e1[x][++e1[x][0]]=e2[y][++e2[y][0]]=2*i-1;
e2[x][++e2[x][0]]=e1[y][++e1[y][0]]=2*i;
pd[2*i-1][2*i]=pd[2*i][2*i-1]=false;
aa[2*i-1].st=aa[2*i].en=x;
aa[2*i-1].en=aa[2*i].st=y;
}
for(i=1;i<=2*m;++i)
for(j=1;j<=2*m;++j)
if(pd[i][j]&&(aa[i].en==aa[j].st))
a[i][j]+=1;
y=t-1;
while(y){
if(y&1){
if(f){
for(i=1;i<=2*m;++i)
for(j=1;j<=2*m;++j)
ans[i][j]=a[i][j];
f=false;
}
else{
for(i=1;i<=2*m;++i)
for(j=1;j<=2*m;++j){
c[i][j]=0;
for(k=1;k<=2*m;++k)
c[i][j]=(c[i][j]+(a[i][k]*ans[k][j])%D)%D;
}
for(i=1;i<=2*m;++i)
for(j=1;j<=2*m;++j)
ans[i][j]=c[i][j];
}
}
y>>=1;
for(i=1;i<=2*m;++i)
for(j=1;j<=2*m;++j){
c[i][j]=0;
for(k=1;k<=2*m;++k)
c[i][j]=(c[i][j]+(a[i][k]*a[k][j])%D)%D;
}
for(i=1;i<=2*m;++i)
for(j=1;j<=2*m;++j)
a[i][j]=c[i][j];
}
int sum=0;
for(i=1;i<=e1[A][0];++i)
for(j=1;j<=e2[B][0];++j)
sum=(sum+ans[e1[A][i]][e2[B][j]])%D;
printf("%d\n",sum);
}

【bzoj1875】【SDOI2009】【HH去散步】的更多相关文章

  1. bzoj1875: [SDOI2009]HH去散步

    终于A了...早上按自己以前的写法一直WA.下午换了一种写法就A了qwq #include<cstdio> #include<cstring> #include<iost ...

  2. BZOJ1875 [SDOI2009]HH去散步 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问 ...

  3. BZOJ1875 [SDOI2009]HH去散步 【dp + 矩阵优化】

    题目 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变 ...

  4. [难题题解] [BZOJ1875] [SDOI2009] HH去散步

    题目H有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人 ...

  5. 【题解】 bzoj1875: [SDOI2009]HH去散步 (动态规划+矩阵乘法)

    bzoj1875,懒得复制,戳我戳我 Solution: 看到这道题,看的出是个dp,每个点\(t\)时刻到达的方案数等于\(t-1\)到连过来的点方案数之和 但又因为题目有要求不能走一样的边回去不是 ...

  6. [bzoj1875][SDOI2009] HH去散步 [dp+矩阵快速幂]

    题面 传送门 正文 其实就是让你求有多少条长度为t的路径,但是有一个特殊条件:不能走过一条边以后又立刻反着走一次(如果两次经过同意条边中间隔了别的边是可以的) 如果没有这个特殊条件,我们很容易想到dp ...

  7. BZOJ1875: [SDOI2009]HH去散步 图上边矩乘

    这道题十分的坑…… 我作为一只连矩乘都不太会的渣渣看到这道题就只能神搜了….. 首先说一下普通的矩乘求方案,就是高出邻接矩阵然后一顿快速幂….. 矩乘一般就是一些秘制递推….. 再说一下这道题,我们可 ...

  8. bzoj1875 [SDOI2009]HH去散步——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1875 有个限制是不能走回头路,比较麻烦: 所以把矩阵中的元素设成边的经过次数,单向边之间就好 ...

  9. bzoj1875 [SDOI2009]HH去散步 矩阵快速幂

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1875 题解 如果没有这个"不能立刻沿着刚刚走来的路走回",那么这个题就是一 ...

  10. BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )

    把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 ------------------------------------------------------------------ ...

随机推荐

  1. n2n搭建手记-1-V1

    搭建环境 supernode :阿里云主机一台 aly1(Centos 6.5) edg2node:美团云机器两台 mty1,mty2(Centos 7.0) Step-1 各机器安装subviers ...

  2. [CF983D]Arkady and Rectangles

    题意:按顺序在坐标轴上画$n$个颜色为$1\cdots n$的矩形(数字大的颜色覆盖数字小的颜色),问最后能看到多少种颜色 先离散化,然后考虑扫描线+线段树 线段树每个节点用一个set存覆盖整个区间的 ...

  3. Python中内置的日志模块logging用法详解

    logging模块简介 Python的logging模块提供了通用的日志系统,可以方便第三方模块或者是应用使用.这个模块提供不同的日志级别,并可以采用不同的方式记录日志,比如文件,HTTP GET/P ...

  4. linux-改变文件属主权限-chown

    http://www.cnblogs.com/peida/archive/2012/12/04/2800684.html chown将指定文件的拥有者改为指定的用户或组,用户可以是用户名或者用户ID: ...

  5. SQL CTE 递归分割以逗号分隔的字符串

    )) INSERT INTO @t SELECT 'AAA,BBB,CCC' SELECT * FROM @t ;WITH mycte AS ( ,mend,num FROM @t UNION ALL ...

  6. CentOS release 6.6 (Final)如何安装firefox和chromium

    一.firefox的安装: 1. 安装remi源 rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8 ...

  7. 用友u8数据库表结构

    用友数据库表名参照表1 Accessaries 成套件表2 AccInformation 帐套参数表3 AdjustPVouch4 AdjustPVouchs5 Ap_AlarmSet 单位报警分类设 ...

  8. 通过案例对SparkStreaming透彻理解三板斧之一

    本节课通过二个部分阐述SparkStreaming的理解: 一.解密SparkStreaming另类在线实验 二.瞬间理解SparkStreaming本质 Spark源码定制班主要是自己做发行版.自己 ...

  9. 搭建svnserve并创建提交钩子

    之前做过很多这个过程了,但每次总有些地方不记得要查资料,现在顺手记录一下,以后好查. 安装svn apt-get install subversion 创建代码仓库 svnadmin create & ...

  10. JAVA加解密 -- 对称加密算法与非对称加密算法

    对称加密算法:双方必须约定好算法 DES 数据加密标准:由于不断地被破解 自98年起就已经逐渐放弃使用 AES 目前使用最多的加密方式,官方并未公布加密方式已被破解,替代DES 实现和DES非常接近 ...