https://cs.stanford.edu/people/karpathy/deepimagesent/

Abstract

We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.

我们展示了一个模型,它能生成图像和它们区域的自然语言描述。我们的方法杠杆平衡图像集与它们的句子描述,以学习语言和视觉数据之间内在模态的关系。我们的对齐模型是基于一种新的结合,图像区域的卷积神经网络,句子的双向递归神经网络,和通过多模态嵌入对齐两种模式的结构化目标。然后,我们描述了一种多模式递归神经网络架构,它是使用推断对齐方法来学习生成图像区域的新描述。我们证明我们的对齐模型在FLICKR8K、FLIKR30K和MSCCOO数据集的检索实验中产生最先进的结果。然后,我们表示,生成的描述显著地胜过无论是全图还是新的区域水平标注数据集的检索基线。

Code:链接 其他

1. Introduction简介

A quick glance at an image is sufficient for a human to point out and describe an immense amount of details about the visual scene [14]. However, this remarkable ability has proven to be an elusive task for our visual recognition models. The majority of previous work in visual recognition has focused on labeling images with a fixed set of visual categories and great progress has been achieved in these endeavors [45, 11]. However, while closed vocabularies of visual concepts constitute a convenient modeling assumption, they are vastly restrictive when compared to the enormous amount of rich descriptions that a human can compose.

对人类来说快速地看一眼图片并指出并描述视觉场景的详细细节是足够的。但是,这个杰出的能力已证明对视觉识别模型来说是一个难以捉摸的任务。

Some pioneering approaches that address the challenge of generating image descriptions have been developed [29,13]. However, these models often rely on hard-coded visual concepts and sentence templates, which imposes limits on their variety. Moreover, the focus of these works has been on reducing complex visual scenes into a single sentence, which we consider to be an unnecessary restriction.

In this work, we strive to take a step towards the goal of  generating dense descriptions of images (Figure 1). The primary challenge towards this goal is in the design of a model that is rich enough to simultaneously reason about contents of images and their representation in the domain of natural language. Additionally, the model should be free of assumptions about specific hard-coded templates, rules or categories and instead rely on learning from the training data. The second, practical challenge is that datasets of image captions are available in large quantities on the internet[21, 58, 37], but these descriptions multiplex mentions of several entities whose locations in the images are unknown.

Deep Visual-Semantic Alignments for Generating Image Descriptions(深度视觉-语义对应对于生成图像描述)的更多相关文章

  1. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  2. 论文笔记:Visual Semantic Navigation Using Scene Priors

    Visual Semantic Navigation Using Scene Priors 2018-10-21 19:39:26 Paper:  https://arxiv.org/pdf/1810 ...

  3. 论文:利用深度强化学习模型定位新物体(VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS)

    这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来 ...

  4. 论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks

    Pedestrian Detection aided by Deep Learning Semantic Tasks CVPR 2015 本文考虑将语义任务(即:行人属性和场景属性)和行人检测相结合, ...

  5. 论文笔记:Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language Association

    Improving Deep Visual Representation for Person Re-identification by Global and Local Image-language ...

  6. DSSM(DEEP STRUCTURED SEMANTIC MODELS)

    Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrou ...

  7. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

  8. Deep Learning 学习随记(五)深度网络--续

    前面记到了深度网络这一章.当时觉得练习应该挺简单的,用不了多少时间,结果训练时间真够长的...途中debug的时候还手贱的clear了一下,又得从头开始运行.不过最终还是调试成功了,sigh~ 前一篇 ...

  9. 【ML】Predict and Constrain: Modeling Cardinality in Deep Structured Prediction -预测和约束:在深度结构化预测中建模基数

    [论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction   (35th-ICML,PMLR) [ ...

随机推荐

  1. Ubuntu的复制粘贴操作及常用快捷键(摘自网络)

    Ubuntu的复制粘贴操作 终端最大化快捷键:crtl + win + 上 1.最为简单,最为常用的应该是鼠标右键操作了,可以选中文件,字符等,右键鼠标,复制,到目的地右键鼠标,粘贴就结束了. 2.快 ...

  2. ubutun

    地址:http://www.cnblogs.com/dutlei/archive/2012/11/20/2778327.html

  3. FPGA中逻辑复制

    copy from http://www.cnblogs.com/linjie-swust/archive/2012/03/27/FPGA_verilog.html 在FPGA设计中经常使用到逻辑复制 ...

  4. Delphi2010中DataSnap高级技术(转)

    一. 为DataSnap系统服务程序添加描述 这几天一直在研究Delphi 2010的DataSnap,感觉功能真是很强大,现在足有理由证明Delphi7该下岗了. DataSnap有三种服务模式,其 ...

  5. ansible命令应用示例

                                  ansible命令应用示例                             ping slave组 ansible slave -m ...

  6. 【转】JMeter 聚合报告之90% Line参数说明

    其实要说明这个参数的含义非常简单,可能你早就知道他的含义,但我对这个参数一直有误解,而且还一直以为是“真理”,原于一次面试,被问到了这个问题,所以引起我这个参数的重新认识. 先说说我错误的认识: 我一 ...

  7. entering power save mode无法开机解决办法

    标签(空格分隔): 服务器 问题描述: 服务器型号为IBM system x 3755 m3.服务器在搬动之前运行良好,换完位置之后出现按完电源键后无法进入系统,通过显示器看到entering pow ...

  8. 如何检测 51单片机IO口的下降沿

    下降沿检测,说白了就是满足这样一个逻辑,上次检测是1,这次检测是0,就是下降沿. 从这个条件可知,要确保能够正确检测到一个下降沿,负脉冲的宽度,必须大于一个检测周期,当负脉冲宽度小于一个检测周期,就有 ...

  9. Django界面不能添加中文解决办法

    Django项目部署好后,界面添加中文会报错,解决办法: 创建数据库时要指定编码格式: CREATE DATABASE blog CHARACTER SET utf8; 如果已经创建完毕则修改: al ...

  10. 处理大数据对象clob数据和blob数据

    直接上下代码: package com.learn.jdbc.chap06; import java.io.File; import java.io.FileInputStream; import j ...