迭代器

# 双下方法
# print([1].__add__([2]))
# print([1]+[2]) # 迭代器
# l = [1,2,3]
# 索引
# 循环 for
# for i in l:
# i
#
# for k in dic:
# pass # list
# dic
# str
# set
# tuple
# f = open()
# range()
# enumerate
# print(dir([])) #告诉我列表拥有的所有方法
# ret = set(dir([]))&set(dir({}))&set(dir(''))&set(dir(range(10)))
# print(ret) #iterable
# print('__iter__' in dir(int))
# print('__iter__' in dir(bool))
# print('__iter__' in dir(list))
# print('__iter__' in dir(dict))
# print('__iter__' in dir(set))
# print('__iter__' in dir(tuple))
# print('__iter__' in dir(enumerate([])))
# print('__iter__' in dir(range(1))) # 只要是能被for循环的数据类型 就一定拥有__iter__方法
# print([].__iter__())
# 一个列表执行了__iter__()之后的返回值就是一个迭代器
# print(dir([]))
# print(dir([].__iter__()))
# print(set(dir([].__iter__())) - set(dir([])))
# print([1,'a','bbb'].__iter__().__length_hint__()) #元素个数
# l = [1,2,3]
# iterator = l.__iter__()
# print(iterator.__next__())
# print(iterator.__next__())
# print(iterator.__next__())
# print(iterator.__next__()) # Iterable 可迭代的 -- > __iter__ #只要含有__iter__方法的都是可迭代的
# [].__iter__() 迭代器 -- > __next__ #通过next就可以从迭代器中一个一个的取值 # 只要含有__iter__方法的都是可迭代的 —— 可迭代协议 # print('__iter__' in dir( [].__iter__()))
# print('__next__' in dir( [].__iter__()))
from collections import Iterable
from collections import Iterator
# print(isinstance([],Iterator))
# print(isinstance([],Iterable)) # class A:
# # def __iter__(self):pass
# def __next__(self):pass
#
# a = A()
# print(isinstance(a,Iterator))
# print(isinstance(a,Iterable)) # l = [1,2,3,4]
# for i in l.__iter__():
# print(i) # 迭代器的概念
# 迭代器协议 —— 内部含有__next__和__iter__方法的就是迭代器 # 迭代器协议和可迭代协议
# 可以被for循环的都是可迭代的
# 可迭代的内部都有__iter__方法
# 只要是迭代器 一定可迭代
# 可迭代的.__iter__()方法就可以得到一个迭代器
# 迭代器中的__next__()方法可以一个一个的获取值 # for循环其实就是在使用迭代器
# iterator
# 可迭代对象
# 直接给你内存地址
# print([].__iter__())
# print(range(10)) #for
#只有 是可迭代对象的时候 才能用for
#当我们遇到一个新的变量,不确定能不能for循环的时候,就判断它是否可迭代 # for i in l:
# pass
#iterator = l.__iter__()
#iterator.__next__() #迭代器的好处:
# 从容器类型中一个一个的取值,会把所有的值都取到。
# 节省内存空间
#迭代器并不会在内存中再占用一大块内存,
# 而是随着循环 每次生成一个
# 每次next每次给我一个
# range
# f
# l = [1,2,3,45]
# iterator = l.__iter__()
# while True:
# print(iterator.__next__()) # print(range(100000000000000))
# print(range(3))
# print(list(range(3)))
# def func():
# for i in range(2000000):
# i = 'wahaha%s'%i
# return i # 生成器 —— 迭代器
# 生成器函数 —— 本质上就是我们自己写得函数
# 生成器表达式
l = [1,2,3,4,5]
for i in l:
print(i)
if i == 2:
break for i in l:
print(i)

生成器

#生成器函数
# def generator():
# print(1)
# return 'a'
#
# ret = generator()
# print(ret) #只要含有yield关键字的函数都是生成器函数
# yield不能和return共用且需要写在函数内
# def generator():
# print(1)
# yield 'a'
# #生成器函数 : 执行之后会得到一个生成器作为返回值
# ret = generator()
# print(ret)
# print(ret.__next__()) # def generator():
# print(1)
# yield 'a'
# print(2)
# yield 'b'
# yield 'c'
# g = generator()
# for i in g:
# print(i)
# ret = g.__next__()
# print(ret)
# ret = g.__next__()
# print(ret)
# ret = g.__next__()
# print(ret) #娃哈哈%i
def wahaha():
for i in range(2000000):
yield '娃哈哈%s'%i
# g = wahaha()
# g1 = wahaha()
# print(g.__next__())
# print(g1.__next__()) # g = wahaha()
# count = 0
# for i in g:
# count +=1
# print(i)
# if count > 50:
# break
# # print('*******',g.__next__())
# for i in g:
# count +=1
# print(i)
# if count > 100:
# break

python 迭代器 和生成器的更多相关文章

  1. Python 迭代器和生成器(转)

    Python 迭代器和生成器 在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的, ...

  2. 一文搞懂Python迭代器和生成器

    很多童鞋搞不懂python迭代器和生成器到底是什么?它们之间又有什么样的关系? 这篇文章就是要用最简单的方式让你理解Python迭代器和生成器! 1.迭代器和迭代过程 维基百科解释道: 在Python ...

  3. Python - 迭代器与生成器 - 第十三天

    Python 迭代器与生成器 迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问 ...

  4. 怎么理解Python迭代器与生成器?

    怎么理解Python迭代器与生成器?在Python中,使用for ... in ... 可以对list.tuple.set和dict数据类型进行迭代,可以把所有数据都过滤出来.如下:         ...

  5. Python迭代器,生成器--精华中的精华

    1. 迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大 ...

  6. python迭代器与生成器详解

    迭代器与生成器 迭代器(iterator)与生成器(generator)是 Python 中比较常用又很容易混淆的两个概念,今天就把它们梳理一遍,并举一些常用的例子. for 语句与可迭代对象(ite ...

  7. Python—迭代器与生成器

    迭代器与生成器 生成器(generator) 先来了解一下列表生成器: list = [i*2 for i in range(10)] print(list)>>>>[0, 2 ...

  8. python -迭代器与生成器 以及 iterable(可迭代对象)、yield语句

    我刚开始学习编程没多久,对于很多知识还完全不知道,而有些知道的也是一知半解,我想把学习到的知识记录下来,一是弥补记忆力差的毛病,二也是为了待以后知识能进一步理解透彻时再回来做一个补充. 参考链接: 完 ...

  9. python迭代器,生成器

    1. 迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.另外,迭代器的一大 ...

  10. Python迭代器和生成器你学会了吗?

    在了解什么是迭代器和生成器之前,我们先来了解一下容器的概念.对于一切皆对象来说,容器就是对象的集合.例如列表.元祖.字典等等都是容器.对于容器,你可以很直观地想象成多个元素在一起的单元:而不同容器的区 ...

随机推荐

  1. python在Android下的自动化测试用法

    # This Python file uses the following encoding: utf-8from com.android.monkeyrunner import MonkeyRunn ...

  2. SpringMvc-自定义视图

    1.创建视图: 注意:创建视图的时候需要实现View接口的俩个方法 package com.atguigu.springmvc.views; import java.util.Date; import ...

  3. OA环境搭建及卸载操作帮助文档

    目    录 项目介绍 JDK的安装与验证 1.安装JDK 2.添加环境变量 3.验证JDK MySql的安装与验 1.安装MySql 2.登录Mysql帐号 3.导入数据库 Tomcat的安装与验证 ...

  4. 什么是Load Average?

    运维工程师在日常运维中经常使用w.top.uptime等命令来查看系统当前运行的负载情况.那么作为运维工程师是如何通过以上命令来判断系统当前负载是否已经达到极限了呢?为此笔者总结了一下如何通过load ...

  5. POJ-3104 Drying---二分答案判断是否可行

    题目链接: https://cn.vjudge.net/problem/POJ-3104 题目大意: 有一些衣服,每件衣服有一定水量,有一个烘干机,每次可以烘一件衣服,每分钟可以烘掉k滴水.每件衣服每 ...

  6. 函子(Monad)新解:函子定义了一个类型(泛型)和建立在这个类型上的一组运算符

    这组运算符和代数中的运算加减乘除运算符一样,符合一定的定律:结合律.(交换律)等: 函数式编程的核心(底层支持)就是这些类型和运算符的定义. 函子就是定义这些类型和运算符的(). 运算符通常为单目运算 ...

  7. 如何打卡后缀为3ds的文件

    打开.3DS文件 3DS文件怎么打开? 用它吧:a3dsviewer,顾名思义,一个3D文件浏览工具,为用户提供一个快速和简单的3DS文件浏览器很容易. 这里是一些主要特点的“a3dsviewer”: ...

  8. Linux学习——目录结构

    在Linux当中,一切皆为文件,包括目录也属于文件.FHS(Filesystem Hierarchy Standard)的出现对文件目录系统做出了统一规范. Linux的目录结构: / - 根 /bi ...

  9. TCP套接字

    端口的概念 每个电脑一根网线,但是你挂着QQ的同时还可以浏览网页.两个不同应用的数据在同一根网线里是如何传输的呢?根据七层互联网模型,这个功能由运输层(TCP是运输层主要协议)实现.怎么实现呢,在网络 ...

  10. view添加毛玻璃效果两种方法

    第一种方法: UIBlurEffect *effect = [UIBlurEffect effectWithStyle:UIBlurEffectStyleLight]; UIVisualEffectV ...