题目

用一道板子题来复习一下\(bsgs\)

\(bsgs\)用于求解形如

\[a^x\equiv b(mod\ p)
\]

这样的高次不定方程

由于费马小定理的存在,我们可是直接暴力扫一遍\(p\),由于\(p-1\)次之后肯定会有循环节出现,所以\(O(p)\)时间内就可以出解

\(bsgs\)本质上就是一种分块了

设\(m=ceil(\sqrt{p})\),我们设\(x=i\times m-j\)

显然我们只需要\(i,j\in[0,m]\)就可以令\(x\)表示\([0,p]\)之间的所有数

现在我们的方程变成了这个样子

\[\frac{a^{i\times m}}{a^j}\equiv b(mod\ p)
\]

也就是

\[a^{i\times m}\equiv b\times a^j(mod\ p)
\]

我们可以先开一个\(hash\)表,把所有\(b\times a^j\),其中\(j\in[0,m]\)的值存下来

之后我们挨个检验\(a^{i\times m}\)的值就好了,如果在\(hash\)表里找到和\(a^{i\times m}\)相等的数,那么\(i\times m-j\)就是答案了

代码

#include<cmath>
#include<cstdio>
#include<cstring>
#include<tr1/unordered_map>
#define re register
#define LL long long
using namespace std::tr1;
unordered_map<LL,LL> ma;
LL a,b,P;
int m;
inline LL quick(LL a,LL b) {LL S=1;while(b) {if(b&1) S=S*a%P;b>>=1;a=a*a%P;}return S;}
int main()
{
scanf("%lld%lld%lld",&P,&a,&b);
m=ceil(std::sqrt(P));
LL S=1,t=quick(a,m);
for(re int i=0;i<=m;i++) ma[S*b%P]=i%P,S=S*a%P;
S=t;
for(re int i=1;i<=m;i++)
{
if(ma[S]) {LL ans=i*m-ma[S];printf("%d\n",(ans%P+P)%P);return 0;}
S=S*t%P;
}
puts("no solution");
return 0;
}

【[TJOI2007]可爱的质数】的更多相关文章

  1. [Luogu] P3846 [TJOI2007]可爱的质数

    题目描述 给定一个质数P(2<=P<2312^{31}231),以及一个整数B(2<=B<P),一个整数N(2<=N<P). 现在要求你计算一个最小的L,满足BL≡ ...

  2. Luogu P3846 [TJOI2007] 可爱的质数/【模板】BSGS

    题意 给定 \(y,z,p\),求最小的正整数 \(x\) 满足 \(y^x\equiv z\bmod p\),保证 \(p\) 是质数. \(\texttt{Data Range:}2\leq y, ...

  3. 【洛谷 P3846】 [TJOI2007]可爱的质数 (BSGS)

    题目链接 \(BSGS\)模板题..不会点这里 #include <cstdio> #include <cmath> #include <map> using na ...

  4. [TJOI2007] 可爱的质数

    题意 求最小的\(x\)满足\(a^x \equiv b\mod p\) 想法 这个是标准的板子题,\(BSGS\)算法可以用来解决\(a^x \equiv b\mod p\) 和 \(x^a \eq ...

  5. BSGS及扩展BSGS总结(BSGS,map)

    蒟蒻哪里有什么总结,只能点击%YL% 还有这位ZigZagK大佬的blog \(\mbox{BSGS}\) 模板题:洛谷P3846 [TJOI2007]可爱的质数 给定\(a,b\)和模数\(\mbo ...

  6. new 经典基础模板总结

    NOIP-NOI-ZJOI基础模板总结 目录 C++语言和STL库操作 重载运算符操作 /* 重载运算符 格式 如重载小于号 这里是以x递减为第一关键字比较,y递减为第二关键字比较 */ bool o ...

  7. [note]BSGS & exBSGS

    BSGS (感觉这东西还是要写一下) BSGS主要用于求解形如\(x^k=y\pmod p\)(注意这里p与x互质)这样的方程的最小正整数解的问题 设\(m=\lceil\sqrt p\rceil,k ...

  8. 大步小步法(BSGS) 学习笔记

    \(\\\) BSGS 用于求解关于 \(x\) 的方程: \[ a^x\equiv b\pmod p\ ,\ (p,a)=1 \] 一般求解的是模意义下的指数,也就是最小非负整数解. \(\\\) ...

  9. BSGS算法(大小步算法)

    $BSGS$ 算法 $Baby\ Steps\ Giant\ Steps$. 致力于解决给定两个互质的数 $a,\ p$ 求一个最小的非负整数 $x$ 使得 $a^x\equiv b(mod\ p)$ ...

随机推荐

  1. vue中添加util公共方法&&ES6之import、export

    vue中添加util公共方法&&ES6之import.export https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Re ...

  2. pulic——功能性(自己写完测试的)

    一. 构建一个数组[“00:00”,"00:05"..."23:55"]的数组 function buildAxis(){ var ary=[]; ary.pu ...

  3. 《X86汇编语言:从实模式到保护模式》读书笔记之引言

    有幸结识了<X86汇编语言:从实模式到保护模式>一书.我觉得这本书非常好,语言活泼,通俗易懂,源码丰富,受益匪浅.读罢一遍,意犹未尽.于是打算再读一遍,并把自己的读书所学总结成笔记,一来给 ...

  4. Linux内存管理机制简析

    Linux内存管理机制简析 本文对Linux内存管理机制做一个简单的分析,试图让你快速理解Linux一些内存管理的概念并有效的利用一些管理方法. NUMA Linux 2.6开始支持NUMA( Non ...

  5. D3(v5) in TypeScript 坐标轴之 饼状图生成

    饼状图生成时依旧遇到了类型问题,记录如下: import * as d3 from 'd3'; import * as React from 'react'; class TestGraph exte ...

  6. 使用mini-define实现前端代码的模块化管理

    这篇文章主要介绍了使用mini-define实现前端代码的模块化管理,十分不错的一篇文章,这里推荐给有需要的小伙伴. mini-define 依据require实现的简易的前端模块化框架.如果你不想花 ...

  7. 很有用的PHP笔试题系列二

    1.如何用php的环境变量得到一个网页地址的内容?ip地址又要怎样得到? Gethostbyname() echo $_SERVER ["PHP_SELF"];echo $_SER ...

  8. JavaScript实现StringBuffer

    function StringBuffer() { this._strings = new Array(); } StringBuffer.prototype.Append = function(_s ...

  9. C#学习笔记9

    1.多播委托:由与delegate关键字声明的委托,在编译后默认继承Delegate与MulticastDelegate类型,所以声明的委托自然就含有多播委托的特性,即一个委托变量可以调用一个方法链( ...

  10. POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)

    题意 题目链接 \(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图 Sol Havel–Hakimi定理: 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这 ...