luogu

题意

给出\(n,a_i,B_{min},B_{max}\),求使得\(a_1x_1+a_2x_2+...+a_nx_n=B\)存在一组非负整数解的\(B\in[B_{min},B_{max}]\)的数量。

\(n\le12,0\le a_i \le 5*10^5,1\le B_{min}\le B_{max}\le 10^{12}\)

sol

和之前那个Luogu3403跳楼机差不多啊。

无非就是拿\(a_i\)的最小值来当模数就好了。

理论上是需要去掉\(a_i=0\)的,然而直接写并没有\(WA\)。所以不要想着手造一组数据把我的代码hack掉

code

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
#define ll long long
#define pli pair<ll,int>
#define mk make_pair
const int N = 5e5+5;
int n,a[12],to[N*12],nxt[N*12],ww[N*12],head[N],cnt,vis[N];
ll L,R,f[N],ans;
priority_queue<pli,vector<pli>,greater<pli> >Q;
void link(int u,int v,int w)
{
to[++cnt]=v;nxt[cnt]=head[u];ww[cnt]=w;
head[u]=cnt;
}
void Dijkstra()
{
memset(f,63,sizeof(f));
f[0]=0;Q.push(mk(0,0));
while (!Q.empty())
{
int u=Q.top().second;Q.pop();
if (vis[u]) continue;vis[u]=1;
for (int e=head[u];e;e=nxt[e])
if (f[to[e]]>f[u]+ww[e])
f[to[e]]=f[u]+ww[e],Q.push(mk(f[to[e]],to[e]));
}
}
int main()
{
scanf("%d%lld%lld",&n,&L,&R);L--;
for (int i=0;i<n;++i) scanf("%d",&a[i]);
sort(a,a+n);
for (int i=0;i<a[0];++i)
for (int j=1;j<n;++j)
link(i,(i+a[j])%a[0],a[j]);
Dijkstra();
for (int i=0;i<a[0];++i) if (f[i]<=R) ans+=(R-f[i])/a[0]+1;
for (int i=0;i<a[0];++i) if (f[i]<=L) ans-=(L-f[i])/a[0]+1;
printf("%lld\n",ans);
return 0;
}

[Luogu2371][国家集训队]墨墨的等式的更多相关文章

  1. 洛谷P2371 [国家集训队]墨墨的等式

    P2371 [国家集训队]墨墨的等式 题目描述 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=Ba_1x_1+a_2y_2+-+a_nx_n=Ba1​x1​+a2​y2​+-+a ...

  2. 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式

    接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...

  3. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  4. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  5. 数论+spfa算法 bzoj 2118 墨墨的等式

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1283  Solved: 496 Description 墨墨突然对等式很感兴 ...

  6. bzoj 2118: 墨墨的等式

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  7. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  8. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  9. 【BZOJ2118】墨墨的等式 最短路

    [BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...

随机推荐

  1. 谷歌机器学习速成课程---3降低损失 (Reducing Loss):梯度下降法

    迭代方法图(图 1)包含一个标题为“计算参数更新”的华而不实的绿框.现在,我们将用更实质的方法代替这种华而不实的算法. 假设我们有时间和计算资源来计算 w1 的所有可能值的损失.对于我们一直在研究的回 ...

  2. 【Head First Servlets and JSP】笔记18:JSP指令

    mark. jetbrain tomcat配置:https://www.jetbrains.com/help/idea/2017.1/creating-and-running-your-first-w ...

  3. [POI2007]立方体大作战tet

    题目 BZOJ 洛谷 做法 很巧妙的题,注意每种颜色只有两个 消除一种颜色,其实就是看中间有多少个没有被消除的块,这种动态距离问题显然能用树状数组解决 洛谷输出方案,暴力往下爬就行 My comple ...

  4. PreTranslateMessage作用和使用方法

    PreTranslateMessage作用和使用方法  PreTranslateMessage是消息在送给TranslateMessage函数之前被调用的,绝大多数本窗口的消息都要通过这里,比较常用, ...

  5. Docker 搭建一个Docker应用栈

    Docker应用栈结构图 Build Django容器 编写docker-file FROM django RUN pip install redis build django-with-redis ...

  6. C#遍历指定文件夹中的所有文件

    DirectoryInfo TheFolder=new DirectoryInfo(folderFullName);//遍历文件夹foreach(DirectoryInfo NextFolder in ...

  7. java——base64 加密和解密

    base64 一.加密 *.若有要求输入字符必须为UTF-8: 则需str.getByte("utf-8");  //在getByte()中指定utf-8编码,否则中文字符将被加密 ...

  8. json01-json简介和语法

    JSON: JavaScript Object Notation(JavaScript 对象表示法) JSON 是存储和交换文本信息的语法.类似 XML,但比 XML 更小.更快,更易解析,是轻量级的 ...

  9. Java -- JDBC 获取数据库自动 生成的主键值

    public class Demo4 { /* create table test1 ( id int primary key auto_increment, name varchar(20) ); ...

  10. Java-集合类源码List篇(三)

    前言 前面分析了ArrayList和LinkedList的实现,分别是基于数组和双向链表的List实现.但看之前那张图,还有两个实现类,一个是Vector,另一个是Stack,接下里一起走进它们的源码 ...