luogu

题意

给出\(n,a_i,B_{min},B_{max}\),求使得\(a_1x_1+a_2x_2+...+a_nx_n=B\)存在一组非负整数解的\(B\in[B_{min},B_{max}]\)的数量。

\(n\le12,0\le a_i \le 5*10^5,1\le B_{min}\le B_{max}\le 10^{12}\)

sol

和之前那个Luogu3403跳楼机差不多啊。

无非就是拿\(a_i\)的最小值来当模数就好了。

理论上是需要去掉\(a_i=0\)的,然而直接写并没有\(WA\)。所以不要想着手造一组数据把我的代码hack掉

code

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
#define ll long long
#define pli pair<ll,int>
#define mk make_pair
const int N = 5e5+5;
int n,a[12],to[N*12],nxt[N*12],ww[N*12],head[N],cnt,vis[N];
ll L,R,f[N],ans;
priority_queue<pli,vector<pli>,greater<pli> >Q;
void link(int u,int v,int w)
{
to[++cnt]=v;nxt[cnt]=head[u];ww[cnt]=w;
head[u]=cnt;
}
void Dijkstra()
{
memset(f,63,sizeof(f));
f[0]=0;Q.push(mk(0,0));
while (!Q.empty())
{
int u=Q.top().second;Q.pop();
if (vis[u]) continue;vis[u]=1;
for (int e=head[u];e;e=nxt[e])
if (f[to[e]]>f[u]+ww[e])
f[to[e]]=f[u]+ww[e],Q.push(mk(f[to[e]],to[e]));
}
}
int main()
{
scanf("%d%lld%lld",&n,&L,&R);L--;
for (int i=0;i<n;++i) scanf("%d",&a[i]);
sort(a,a+n);
for (int i=0;i<a[0];++i)
for (int j=1;j<n;++j)
link(i,(i+a[j])%a[0],a[j]);
Dijkstra();
for (int i=0;i<a[0];++i) if (f[i]<=R) ans+=(R-f[i])/a[0]+1;
for (int i=0;i<a[0];++i) if (f[i]<=L) ans-=(L-f[i])/a[0]+1;
printf("%lld\n",ans);
return 0;
}

[Luogu2371][国家集训队]墨墨的等式的更多相关文章

  1. 洛谷P2371 [国家集训队]墨墨的等式

    P2371 [国家集训队]墨墨的等式 题目描述 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=Ba_1x_1+a_2y_2+-+a_nx_n=Ba1​x1​+a2​y2​+-+a ...

  2. 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式

    接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...

  3. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  4. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  5. 数论+spfa算法 bzoj 2118 墨墨的等式

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1283  Solved: 496 Description 墨墨突然对等式很感兴 ...

  6. bzoj 2118: 墨墨的等式

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+-+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  7. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  8. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  9. 【BZOJ2118】墨墨的等式 最短路

    [BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...

随机推荐

  1. iOS NSCoding 的学习 和 使用

    起初接触的轻量级 物理存储 方式 是 plist  可以存储 系统级别的 字典 数组   但是不能存储自定义的对象类 那会 用自定义对象做存储的 需求也不大 主要 是 还没建立面向对象意识,会的也少. ...

  2. VMWare中安装windowsXP遇到的问题

    XP系统安装 1.安装Windows和安装linux不一样,创建虚拟机完成后Linux自动根据硬盘进行系统安装,不需要提前分区.而windows必须进行提前分区,这个分区是在虚拟磁盘上完成的,就是你创 ...

  3. 使用git从本地上传至git码云远程仓库

    从 http://git-scm.com/download  下载window版的客户端.下载好,一步一步安装即可. 使用前的基本设置 git  config --global user.name & ...

  4. nodejs安装,配置环境,使用express建立一个新项目

    1.下载nodejs安装包 去nodejs官网下载最新版本就行,网址:http://nodejs.cn/download/,点击自己适用的系统,自动下载跟电脑操作系统位数符合的安装包, 下载下来安装包 ...

  5. gem Errno::ECONNRESET: Connection reset by peer - SSL_connect

    问题描述 在使用gem安装软件包时,会时常遇到下面的问题: ERROR: While executing gem ... (Gem::RemoteFetcher::FetchError) Errno: ...

  6. 《机器学习实战第7章:利用AdaBoost元算法提高分类性能》

    import numpy as np import matplotlib.pyplot as plt def loadSimpData(): dataMat = np.matrix([[1., 2.1 ...

  7. pd.read_csv的header用法

    默认Header = 0: In [3]: import pandas as pd In [4]: t_user = pd.read_csv(r'C:\Users\Song\Desktop\jdd_d ...

  8. Java Map增删改查

    示例代码: 学生类 package com.imooc.collection; import java.util.HashSet; import java.util.Set; /** * 学生类 * ...

  9. JMeter学习(一)目录介绍

    JMeter也学了一阵子了,对于基本的操作已了解,再回过头来看看Jmeter的目录,本篇是对于它的目录进行一些简单的介绍. JMeter解压之后打开,根目录如下图: 1.bin:可执行文件目录 2.d ...

  10. Linux 修改DNS解决 Could not retrieve mirrorlist" 报错

    CentOS yum有时出现“Could not retrieve mirrorlist ”的解决办法——resolv.conf的配置 或者IP配置文件上写入 缺少DNS引起的问题1. 无法识别域名 ...