[CQOI2012]局部极小值
注意到\(4\times 7\)的矩阵的局部极小值最多只有8个,可以状压。
设\(f[i][sta]\)表示从小到大填数,当前填到\(i\),极小值的填充状态为\(sta\)的方案数。
考虑到由于是从小到大填数,每个极小值位置没填时,其四周的位置也不能填。
那么可以分情况讨论:
当前填在极小值位置上,\(f[i][sta]+=f[i-1][sta-(1<<j)]\).其中\(j\)为枚举到的位置。
否则,处理出当前状态下可以填的位置数\(num\),以前填了\(i-1\)个,转移:\(f[i][sta]+=f[i-1][sta]*(num-(i-1))\).
最后的答案为\(f[n*m][(1<<num)-1]\),\(num\)为极小值的个数。
但是,可以发现,题目要求极小值只有输入的那几个,但是这样转移可能会在随便填的地方产生新的极小值。
拿这个答案减去多了1个极小值的方案,就可以排除多一个极小值的错误,但是发现多两个的多减了一个,在加上……
其实就是容斥了一下,即原答案\(-\)多了一个的方案\(+\)多了两个的方案.....
然后多了几个的方案可以暴力枚举多了哪几个,添加到原图中,然后和上面一样的dp出来。
#include<bits/stdc++.h>
using namespace std;
#define int long long
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=(x<<1)+(x<<3)+(ch^48);x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar((x%10)^48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
const int dx[]={0,1,1,1,0,-1,-1,-1,0};
const int dy[]={0,1,0,-1,1,1,0,-1,-1};
const int mod = 12345678;
int n,m,mp[10][10],f[30][(1<<9)+10],ans,vx[10],vy[10],num[1000],c[5][8];
char s[10];
int check(int x,int y) {return x>=1&&x<=n&&y>=1&&y<=m;}
int calc() {
memset(f,0,sizeof f);f[0][0]=1;vx[0]=0,vy[0]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(mp[i][j]) vx[++vx[0]]=i,vy[++vy[0]]=j;
for(int s=0;s<(1<<vx[0]);s++) {
memset(c,0,sizeof c);
for(int i=1;i<=vx[0];i++)
if(!(s&(1<<(i-1)))) {
for(int x,y,k=1;k<=8;k++)
if(check(x=vx[i]+dx[k],y=vy[i]+dy[k])) c[x][y]=1;
c[vx[i]][vy[i]]=1;
}num[s]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
num[s]+=c[i][j]^1;
}
for(int i=1;i<=n*m;i++)
for(int s=0;s<(1<<vx[0]);s++) {
(f[i][s]+=f[i-1][s]*max(0ll,num[s]-(i-1))%mod)%=mod;
for(int j=1;j<=vx[0];j++)
if(s&(1<<(j-1))) f[i][s]=(f[i][s]+f[i-1][s^(1<<(j-1))])%mod;
}
return f[n*m][(1<<vx[0])-1];
}
//void debug() {for(int i=1;i<=n;i++,puts("")) for(int j=1;j<=m;j++,putchar(' ')) printf("%d",mp[i][j]);}
void dfs(int x,int y,int f) {
if(y==m+1) return dfs(x+1,1,f),void();
if(x==n+1) return ans=(ans+calc()*f)%mod,/*debug()*/void();
dfs(x,y+1,f);int flag=0;
for(int i=1;i<=8;i++)
if(check(x+dx[i],y+dy[i])&&mp[x+dx[i]][y+dy[i]]) {flag=1;break;}
if(mp[x][y]) flag=1;
if(!flag) mp[x][y]=1,dfs(x,y+1,-f),mp[x][y]=0;
}
void solve () {
read(n),read(m);
for(int i=1;i<=n;i++) {
scanf("%s",s+1);//cout<<s+1<<endl;
for(int j=1;j<=m;j++) if(s[j]=='X') mp[i][j]=1;
}//debug();puts("");
dfs(1,1,1);write((ans%mod+mod)%mod);
}
signed main() {solve();return 0;}
[CQOI2012]局部极小值的更多相关文章
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- [BZOJ2669] [cqoi2012]局部极小值
[BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...
- 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 667 Solved: 350 Description 有一 ...
- P3160 [CQOI2012]局部极小值
题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...
- P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...
- BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...
随机推荐
- symfony 安装使用(一)
Symfony安装教程网上已经存在很多了,但是这里还是要写一下: 1.symfony 安装有以下几种,对应不同的环境 1.1通过composer 命令安装 composer create-projec ...
- 2.1 进程控制之fork创建子进程
fork()函数 目标:熟悉fork创建一个和多个子进程子线程 函数原型:pid_t fork(void); 返回值:成功返回:① 父进程返回子进程的ID(非负) ②子进程返回 0 : 失败返回-1. ...
- C语言实例解析精粹学习笔记——31
实例31: 判断字符串是否是回文 思路解析: 引入两个指针变量(head和tail),开始时,两指针分别指向字符串的首末字符,当两指针所指字符相等时,两指针分别向后和向前移动一个字符位置,并继续比较, ...
- ABAP CDS ON HANA-(11)ABAP CDSでの関連付け
Association in ABAP CDS An association in CDS view joins different data sources. Defining and using ...
- 成都Uber优步司机奖励政策(3月25日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 响应式js设置
<script> (function anonymous() { // 声明一个函数,并直接的执行 function computed() { let HTML = document.do ...
- 完整的vue+vuex+api-router+database请求流程
- Develop Android Game Using Cocos2d-x
0. Environment Windows 7 x64Visual Studio 2013adt-bundle-windows-x86 (http://developer.android.com/s ...
- 最火的.NET开源项目[转]
综合类 微软企业库 微软官方出品,是为了协助开发商解决企业级应用开发过程中所面临的一系列共性的问题, 如安全(Security).日志(Logging).数据访问(Data Access).配置管理( ...
- svn 用cmd命令行启动服务
部署好svn 服务器后,用cmd命令行 svnserve -d -r [仓库地址] 启动服务,这样别的用户可以通过网络访问svn服务器了.