[CQOI2012]局部极小值
注意到\(4\times 7\)的矩阵的局部极小值最多只有8个,可以状压。
设\(f[i][sta]\)表示从小到大填数,当前填到\(i\),极小值的填充状态为\(sta\)的方案数。
考虑到由于是从小到大填数,每个极小值位置没填时,其四周的位置也不能填。
那么可以分情况讨论:
当前填在极小值位置上,\(f[i][sta]+=f[i-1][sta-(1<<j)]\).其中\(j\)为枚举到的位置。
否则,处理出当前状态下可以填的位置数\(num\),以前填了\(i-1\)个,转移:\(f[i][sta]+=f[i-1][sta]*(num-(i-1))\).
最后的答案为\(f[n*m][(1<<num)-1]\),\(num\)为极小值的个数。
但是,可以发现,题目要求极小值只有输入的那几个,但是这样转移可能会在随便填的地方产生新的极小值。
拿这个答案减去多了1个极小值的方案,就可以排除多一个极小值的错误,但是发现多两个的多减了一个,在加上……
其实就是容斥了一下,即原答案\(-\)多了一个的方案\(+\)多了两个的方案.....
然后多了几个的方案可以暴力枚举多了哪几个,添加到原图中,然后和上面一样的dp出来。
#include<bits/stdc++.h>
using namespace std;
#define int long long
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=(x<<1)+(x<<3)+(ch^48);x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar((x%10)^48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
const int dx[]={0,1,1,1,0,-1,-1,-1,0};
const int dy[]={0,1,0,-1,1,1,0,-1,-1};
const int mod = 12345678;
int n,m,mp[10][10],f[30][(1<<9)+10],ans,vx[10],vy[10],num[1000],c[5][8];
char s[10];
int check(int x,int y) {return x>=1&&x<=n&&y>=1&&y<=m;}
int calc() {
memset(f,0,sizeof f);f[0][0]=1;vx[0]=0,vy[0]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(mp[i][j]) vx[++vx[0]]=i,vy[++vy[0]]=j;
for(int s=0;s<(1<<vx[0]);s++) {
memset(c,0,sizeof c);
for(int i=1;i<=vx[0];i++)
if(!(s&(1<<(i-1)))) {
for(int x,y,k=1;k<=8;k++)
if(check(x=vx[i]+dx[k],y=vy[i]+dy[k])) c[x][y]=1;
c[vx[i]][vy[i]]=1;
}num[s]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
num[s]+=c[i][j]^1;
}
for(int i=1;i<=n*m;i++)
for(int s=0;s<(1<<vx[0]);s++) {
(f[i][s]+=f[i-1][s]*max(0ll,num[s]-(i-1))%mod)%=mod;
for(int j=1;j<=vx[0];j++)
if(s&(1<<(j-1))) f[i][s]=(f[i][s]+f[i-1][s^(1<<(j-1))])%mod;
}
return f[n*m][(1<<vx[0])-1];
}
//void debug() {for(int i=1;i<=n;i++,puts("")) for(int j=1;j<=m;j++,putchar(' ')) printf("%d",mp[i][j]);}
void dfs(int x,int y,int f) {
if(y==m+1) return dfs(x+1,1,f),void();
if(x==n+1) return ans=(ans+calc()*f)%mod,/*debug()*/void();
dfs(x,y+1,f);int flag=0;
for(int i=1;i<=8;i++)
if(check(x+dx[i],y+dy[i])&&mp[x+dx[i]][y+dy[i]]) {flag=1;break;}
if(mp[x][y]) flag=1;
if(!flag) mp[x][y]=1,dfs(x,y+1,-f),mp[x][y]=0;
}
void solve () {
read(n),read(m);
for(int i=1;i<=n;i++) {
scanf("%s",s+1);//cout<<s+1<<endl;
for(int j=1;j<=m;j++) if(s[j]=='X') mp[i][j]=1;
}//debug();puts("");
dfs(1,1,1);write((ans%mod+mod)%mod);
}
signed main() {solve();return 0;}
[CQOI2012]局部极小值的更多相关文章
- bzoj 2669 [cqoi2012]局部极小值 DP+容斥
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 838 Solved: 444[Submit][Status ...
- bzoj2669[cqoi2012]局部极小值 容斥+状压dp
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 774 Solved: 411[Submit][Status ...
- [BZOJ2669] [cqoi2012]局部极小值
[BZOJ2669] [cqoi2012]局部极小值 Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...
- 【BZOJ 2669】 2669: [cqoi2012]局部极小值 (状压DP+容斥原理)
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 667 Solved: 350 Description 有一 ...
- P3160 [CQOI2012]局部极小值
题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...
- P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp
题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...
- BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...
随机推荐
- xml的schema约束(Java)
1.schema约束 *dtd语法:<!ELEMENT 元素名称 约束> schema符合xml的语法,是xml语句. 一个xml文件中可以有多个schema,多个schema使用名称空间 ...
- you don't have permission to access forbidden
前几天装一个phpStudy 集成环境,打开测试页面的时候突然出现如下错误: 有一些小总结. 一些小的开发测试在本地开发的话,直接localhost/file 就可以, 如果涉及到大的开发环境,一 ...
- R语言学习笔记(四):apply,sapply,lapply,tapply,vapply以及mapply的用法
apply() apply(m,dimcode,f,fargs) m 是一个矩阵. dimcode是维度编号,取1则为对行应用函数,取2则为对列运用函数. f是函数 fargs是f的可选参数集 > ...
- B -- POJ 1208 The Blocks Problem
参考:https://blog.csdn.net/yxz8102/article/details/53098575 https://www.cnblogs.com/tanjuntao/p/867892 ...
- Java——自动生成30道四则运算---18.09.27
package chuti;import java.io.PrintWriter;import java.util.Scanner;import java.io.FileNotFoundExcepti ...
- ArrayList底层原理
ArrayList底层采用数组实现,访问特别快,它可以根据索引下标快速找到元素.但添加插入删除等写操作效率低,因为涉及到内存数据复制转移. ArrayList对象初始化时,无参数构造器默认容量为10, ...
- js分类多选全选
效果如图: HTML代码: <div class="form-group quanxian-wrap"> <label>项目</label> & ...
- IDEA常用操作(一)
1.视图的调整 左下右的侧边栏如何关闭?——右击选择remove from sidebar 面板上(左下右)的导航栏视图如何隐藏——可以在左下角悬停显示,单击隐藏/开启侧边栏 想打开其它视图怎么办?— ...
- WPF中使用定时器的注意事项
原文:WPF中使用定时器的注意事项 注意事项 要使用System.Windows.Threading.DispatcherTimer,而不能使用System.Timers.Timer. 原因是WPF是 ...
- [【转】ubuntu 16.10 Server 安装及基本部署
一.Ubuntu Server 16.10 LTS 系统安装 Ubuntu 16.10 分为 桌面版 (desktop)和服务器版(Server).两者对于用户而言,最大的区别在于桌面版有图形操作界面 ...