题目描述

B进制数,每个数字i(i=0,1,...,B-1)有a[i]个。你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要用完所有数字),使得X是B-1的倍数。q次询问,每次询问X在B进制下的第k位数字是什么(最低位是第0位)。

输入

第一行包含两个正整数B(2<=B<=10^6),q(1<=q<=10^5)。
第二行包含B个正整数a[0],a[1],a[2],...,a[B-1](1<=a[i]<=10^6)。
接下来q行,每行一个整数k(0<=k<=10^18),表示一个询问。

输出

输出q行,每行一个整数,依次回答每个询问,如果那一位不存在,请输出-1。

样例输入

3 3
1 1 1
0
1
2

样例输出

0
2
-1


题解

二分

一个比较常用的结论:当$k|b-1$(即$k$是$b-1$的约数)时,若$b$进制下某数的每一位之和是$k$的倍数,则该数是$k$的倍数。

在此题中,要求$X$是$B-1$的倍数,即$X$的每一位是$B-1$的倍数。

由于要让$X$尽量大,因此应该让其位数尽可能的多。由于保证了$a[i]\ge 1$,因此可以先选出所有的数,在减掉多出来的一个数。这时需要注意:如果不多出来则不需要减去“0”。

然后倒序求前缀和,询问时二分即可。

时间复杂度$O(B+q\log B)$

#include <cstdio>
#include <algorithm>
using namespace std;
long long sum[1000010];
int main()
{
int n , m , i;
long long k , s = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &sum[i]) , s += (i - 1) * sum[i] , sum[i] += sum[i - 1];
if(s % (n - 1))
for(i = s % (n - 1) + 1 ; i <= n ; i ++ )
sum[i] -- ;
while(m -- )
{
scanf("%lld" , &k);
if(k >= sum[n]) puts("-1");
else printf("%d\n" , lower_bound(sum + 1 , sum + n + 1 , k + 1) - sum - 1);
}
return 0;
}

【bzoj4724】[POI2017]Podzielno 二分的更多相关文章

  1. BZOJ4724 [POI2017]Podzielno

    4724: [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 77  Solved: 37[Submit][Stat ...

  2. bzoj 4724 [POI2017]Podzielno 二分+模拟

    [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 364  Solved: 160[Submit][Status][ ...

  3. 【BZOJ4724】[POI2017]Podzielno 数学+二分

    [BZOJ4724][POI2017]Podzielno Description B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零, ...

  4. BZOJ 4724: [POI2017]Podzielno

    Description 由\([0,B-1]\)的数字构造一个 \(B\) 进制数字,使得他是 \(B-1\) 的倍数. Sol 贪心+二分. 首先 \(X\) 是 \(B-1\) 的倍数,那么有 \ ...

  5. 【BZOJ4726】[POI2017]Sabota? 树形DP

    [BZOJ4726][POI2017]Sabota? Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者 ...

  6. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  7. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  8. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

  9. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

随机推荐

  1. LeetCode-环形链表II

    LeetCode-环形链表II 为找到入口点可以用以下方法 使用快慢指针法直到两个指针相遇 头节点处创建一个新的指针,并且向前移动,两个指针相遇处创建一个新的指针,并且向前移动,直到两个指针相遇为入口 ...

  2. 编辑文件出现:E212 can’t open file for writing

    前面目录没有创建 还可能是权限问题

  3. HTML5—— 你肯定会用到的新知识

    HTML5 简介 语义化标签 新增结构标签 表单 多媒体 HTML5 简介 XML是更加严格的语言 是HTML和XHTML的结合 语义化标签 新增的语义化标签 header nav section a ...

  4. 基于ftp服务的三种登录方式及其相关的访问控制和优化

    ftp(简单文件传输协议),是一种应用广泛的网络文件传输协议和服务,占用20和21号端口,主要用于资源的上传和下载. 在linux对于ftp同widows一样具有很多的种类,这里主要介绍vsfptd( ...

  5. h5移动端页面meta标签

    <!DOCTYPE html> <!-- 使用 HTML5 doctype,不区分大小写 --> <html lang="zh-cmn-Hans"&g ...

  6. Andrew Ng Machine Learning Coursera学习笔记

    课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computati ...

  7. linux安装python并安装pip

    因为最近要在linux环境下进行python编程,所以就试着去安装了一下,但是网上关于python以及pip的安装说实话有点混乱,所以我今天就把前辈的经验再次总结一下,希望可以给大家提供帮助. pyt ...

  8. HDU暑假多校第六场K-werewolf

    一.题意 好人必然说真话,坏人不一定说真话,给定N个人的言论<每人一个发言.不谈及自己>,要求指出有多少个人一定是好人,有多少个人一定是坏人.#define 狼人 坏人#define 村民 ...

  9. MOVE-PERCENTAGE(文字列の部分の代入)

    以下の MOVE 命令のバリアントは.c 型項目についてのみ機能します. MOVE c1 TO c2 PERCENTAGE p [RIGHT]. 左寄せした (RIGHT オプションを指定した場合は右 ...

  10. springboot2.x+maven+proguard代码混淆

    由于需要将源码打包做代码混淆,选择proguard,开始使用各种问题,各种jar包版本问题,但最终成功了,记录一下,也希望能够帮助大家 在pom中添加代码: <build> <fin ...