题目描述

B进制数,每个数字i(i=0,1,...,B-1)有a[i]个。你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要用完所有数字),使得X是B-1的倍数。q次询问,每次询问X在B进制下的第k位数字是什么(最低位是第0位)。

输入

第一行包含两个正整数B(2<=B<=10^6),q(1<=q<=10^5)。
第二行包含B个正整数a[0],a[1],a[2],...,a[B-1](1<=a[i]<=10^6)。
接下来q行,每行一个整数k(0<=k<=10^18),表示一个询问。

输出

输出q行,每行一个整数,依次回答每个询问,如果那一位不存在,请输出-1。

样例输入

3 3
1 1 1
0
1
2

样例输出

0
2
-1


题解

二分

一个比较常用的结论:当$k|b-1$(即$k$是$b-1$的约数)时,若$b$进制下某数的每一位之和是$k$的倍数,则该数是$k$的倍数。

在此题中,要求$X$是$B-1$的倍数,即$X$的每一位是$B-1$的倍数。

由于要让$X$尽量大,因此应该让其位数尽可能的多。由于保证了$a[i]\ge 1$,因此可以先选出所有的数,在减掉多出来的一个数。这时需要注意:如果不多出来则不需要减去“0”。

然后倒序求前缀和,询问时二分即可。

时间复杂度$O(B+q\log B)$

#include <cstdio>
#include <algorithm>
using namespace std;
long long sum[1000010];
int main()
{
int n , m , i;
long long k , s = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &sum[i]) , s += (i - 1) * sum[i] , sum[i] += sum[i - 1];
if(s % (n - 1))
for(i = s % (n - 1) + 1 ; i <= n ; i ++ )
sum[i] -- ;
while(m -- )
{
scanf("%lld" , &k);
if(k >= sum[n]) puts("-1");
else printf("%d\n" , lower_bound(sum + 1 , sum + n + 1 , k + 1) - sum - 1);
}
return 0;
}

【bzoj4724】[POI2017]Podzielno 二分的更多相关文章

  1. BZOJ4724 [POI2017]Podzielno

    4724: [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 77  Solved: 37[Submit][Stat ...

  2. bzoj 4724 [POI2017]Podzielno 二分+模拟

    [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 364  Solved: 160[Submit][Status][ ...

  3. 【BZOJ4724】[POI2017]Podzielno 数学+二分

    [BZOJ4724][POI2017]Podzielno Description B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零, ...

  4. BZOJ 4724: [POI2017]Podzielno

    Description 由\([0,B-1]\)的数字构造一个 \(B\) 进制数字,使得他是 \(B-1\) 的倍数. Sol 贪心+二分. 首先 \(X\) 是 \(B-1\) 的倍数,那么有 \ ...

  5. 【BZOJ4726】[POI2017]Sabota? 树形DP

    [BZOJ4726][POI2017]Sabota? Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者 ...

  6. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  7. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  8. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

  9. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

随机推荐

  1. Maven里面多环境下的属性过滤(配置)

    情景:通常一个项目都为分为开发环境(dev)和测试环境(test)还有正式环境(prod),如果每次一打包都要手动地去更改配置文件,例如数据库连接配置.将会很容易出差错. 解决方案:maven pro ...

  2. Python核心框架tornado的异步协程的2种方式

    什么是异步? 含义 :双方不需要共同的时钟,也就是接收方不知道发送方什么时候发送,所以在发送的信息中就要有提示接收方开始接收的信息,如开始位,同时在结束时有停止位 现象:没有共同的时钟,不考虑顺序来了 ...

  3. elasticsearch 5.x 系列之六 文档索引,更新,查询,删除流程

    一.elasticsearch index 索引流程 步骤: 客户端向Node1 发送索引文档请求 Node1 根据文档ID(_id字段)计算出该文档应该属于shard0,然后请求路由到Node3的P ...

  4. Python学习手册之控制结构(一)

    在上一篇文章中,我们对 Python 进行了简单介绍和介绍了 Python 的基本语法,现在我们继续介绍 Python 控制结构. 查看上一篇文章请点击:https://www.cnblogs.com ...

  5. Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling

    题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...

  6. No parser was explicitly specified, so I'm using the best available HTML parser for this system ("html.parser").警告解决方法

    在使用BeautifulSoup库时出现该警告,虽然不影响正常运行,但强迫症不能忍啊!! 详细警告信息如下: UserWarning: No parser was explicitly specifi ...

  7. THUSC 2018 游记

    现在是闭幕式,我坐在西郊宾馆后排,开始写这篇游记. day0 早上从临汾坐火车到北京,12:52左右到了北京. 这次北京的地铁安检没有排成很长的队,但是在买票的时候我惊喜地发现我身上没有零钱--所幸北 ...

  8. RabbitMQ ddemo 费元星

    http://blog.csdn.net/lmj623565791/article/details/37607165 转载请标明出处:http://blog.csdn.net/lmj623565791 ...

  9. BI领军者之一Tableau试用浅谈

    下图是最新的Gartner BI Magic Quadrant,其中领军者之一的Tableau表现的异常突出,执行力象限上直接甩开其它产品一条街,前瞻性象限上略微超越了MSBI,怀着无比的好奇心,特意 ...

  10. TortoiseGit小乌龟 git管理工具

    1.新建分支git远端新建分支: b001本地git目录:右击--TortoiseGit--获取(会获取到新建分支) 2.本地新建分支对应远端分支本地新建分支:b001 关联远端分支b001(之后工作 ...