题目描述

B进制数,每个数字i(i=0,1,...,B-1)有a[i]个。你要用这些数字组成一个最大的B进制数X(不能有前导零,不需要用完所有数字),使得X是B-1的倍数。q次询问,每次询问X在B进制下的第k位数字是什么(最低位是第0位)。

输入

第一行包含两个正整数B(2<=B<=10^6),q(1<=q<=10^5)。
第二行包含B个正整数a[0],a[1],a[2],...,a[B-1](1<=a[i]<=10^6)。
接下来q行,每行一个整数k(0<=k<=10^18),表示一个询问。

输出

输出q行,每行一个整数,依次回答每个询问,如果那一位不存在,请输出-1。

样例输入

3 3
1 1 1
0
1
2

样例输出

0
2
-1


题解

二分

一个比较常用的结论:当$k|b-1$(即$k$是$b-1$的约数)时,若$b$进制下某数的每一位之和是$k$的倍数,则该数是$k$的倍数。

在此题中,要求$X$是$B-1$的倍数,即$X$的每一位是$B-1$的倍数。

由于要让$X$尽量大,因此应该让其位数尽可能的多。由于保证了$a[i]\ge 1$,因此可以先选出所有的数,在减掉多出来的一个数。这时需要注意:如果不多出来则不需要减去“0”。

然后倒序求前缀和,询问时二分即可。

时间复杂度$O(B+q\log B)$

#include <cstdio>
#include <algorithm>
using namespace std;
long long sum[1000010];
int main()
{
int n , m , i;
long long k , s = 0;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &sum[i]) , s += (i - 1) * sum[i] , sum[i] += sum[i - 1];
if(s % (n - 1))
for(i = s % (n - 1) + 1 ; i <= n ; i ++ )
sum[i] -- ;
while(m -- )
{
scanf("%lld" , &k);
if(k >= sum[n]) puts("-1");
else printf("%d\n" , lower_bound(sum + 1 , sum + n + 1 , k + 1) - sum - 1);
}
return 0;
}

【bzoj4724】[POI2017]Podzielno 二分的更多相关文章

  1. BZOJ4724 [POI2017]Podzielno

    4724: [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 77  Solved: 37[Submit][Stat ...

  2. bzoj 4724 [POI2017]Podzielno 二分+模拟

    [POI2017]Podzielno Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 364  Solved: 160[Submit][Status][ ...

  3. 【BZOJ4724】[POI2017]Podzielno 数学+二分

    [BZOJ4724][POI2017]Podzielno Description B进制数,每个数字i(i=0,1,...,B-1)有a[i]个.你要用这些数字组成一个最大的B进制数X(不能有前导零, ...

  4. BZOJ 4724: [POI2017]Podzielno

    Description 由\([0,B-1]\)的数字构造一个 \(B\) 进制数字,使得他是 \(B-1\) 的倍数. Sol 贪心+二分. 首先 \(X\) 是 \(B-1\) 的倍数,那么有 \ ...

  5. 【BZOJ4726】[POI2017]Sabota? 树形DP

    [BZOJ4726][POI2017]Sabota? Description 某个公司有n个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者 ...

  6. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

  7. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  8. 整体二分QAQ

    POJ 2104 K-th Number 时空隧道 题意: 给出一个序列,每次查询区间第k小 分析: 整体二分入门题? 代码: #include<algorithm> #include&l ...

  9. [bzoj2653][middle] (二分 + 主席树)

    Description 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b ...

随机推荐

  1. Percona-Tookit工具包之pt-ioprofile

      Preface       As a matter of fact,disk IO is the most important factor which tremendously influenc ...

  2. HDFS学习总结

    1.什么是Hadoop 管理网络中跨多台计算机存储的文件系统称为分布式文件系统面临的挑战:使文件系统能容忍节点故障且不丢失任何数据不适合的特点:低时间延迟的数据访问&大量的小文件&多用 ...

  3. (转)Dubbo 简单Dome搭建

    (转)原地址https://blog.csdn.net/noaman_wgs/article/details/70214612/ Dubbo背景和简介 Dubbo开始于电商系统,因此在这里先从电商系统 ...

  4. 2019年第十届蓝桥杯c++A组java/c++组题解

    #include<iostream> #include<vector> using namespace std; vector <int > vec; long l ...

  5. .Net Core On Liunx 环境搭建之 Docker 容器和Nginx

    上一篇文章安装了Mysql8数据库,接下开始安装Docker和Nginx 我的思路是这样的,用Docker当运行环境的虚拟机,Nginx当Http服务器用来做反向代理. 服务器环境:阿里云服务器,操作 ...

  6. Java源码解析——集合框架(一)——ArrayList

    ArrayList源码分析 ArrayList就是动态数组,是Array的复杂版本,它提供了动态的增加和减少元素.灵活的设置数组的大小. 一.类声明 public class ArrayList< ...

  7. MariaDB数据库服务

    一.初始化mariaDB服务程序: yum install mariadb mariadb-server           //安装mariaDB systemctl start mariadb   ...

  8. golang的加法比C快?

    本文同时发表在https://github.com/zhangyachen/zhangyachen.github.io/issues/142 1.31 晚上的火车回家,在公司还剩两个小时,无心工作,本 ...

  9. 北京Uber优步司机奖励政策(3月25日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  10. 2844: albus就是要第一个出场

    2844: albus就是要第一个出场 链接 分析: 和HDU3949差不多互逆,这里需要加上相同的数. 结论:所有数任意异或,构成的数出现一样的次数,次数为$2^{n-cnt}$,cnt为线性基的大 ...