God Save the i-th Queen

Time Limit: 5000ms
Memory Limit: 65536KB

64-bit integer IO format: %lld      Java class name: Main

Type:

None

 

None
 
Graph Theory
 
    2-SAT
 
    Articulation/Bridge/Biconnected Component
 
    Cycles/Topological Sorting/Strongly Connected Component
 
    Shortest Path
 
        Bellman Ford
 
        Dijkstra/Floyd Warshall
 
    Euler Trail/Circuit
 
    Heavy-Light Decomposition
 
    Minimum Spanning Tree
 
    Stable Marriage Problem
 
    Trees
 
    Directed Minimum Spanning Tree
 
    Flow/Matching
 
        Graph Matching
 
            Bipartite Matching
 
            Hopcroft–Karp Bipartite Matching
 
            Weighted Bipartite Matching/Hungarian Algorithm
 
        Flow
 
            Max Flow/Min Cut
 
            Min Cost Max Flow
 
DFS-like
 
    Backtracking with Pruning/Branch and Bound
 
    Basic Recursion
 
    IDA* Search
 
    Parsing/Grammar
 
    Breadth First Search/Depth First Search
 
    Advanced Search Techniques
 
        Binary Search/Bisection
 
        Ternary Search
 
Geometry
 
    Basic Geometry
 
    Computational Geometry
 
    Convex Hull
 
    Pick's Theorem
 
Game Theory
 
    Green Hackenbush/Colon Principle/Fusion Principle
 
    Nim
 
    Sprague-Grundy Number
 
Matrix
 
    Gaussian Elimination
 
    Matrix Exponentiation
 
Data Structures
 
    Basic Data Structures
 
    Binary Indexed Tree
 
    Binary Search Tree
 
    Hashing
 
    Orthogonal Range Search
 
    Range Minimum Query/Lowest Common Ancestor
 
    Segment Tree/Interval Tree
 
    Trie Tree
 
    Sorting
 
    Disjoint Set
 
String
 
    Aho Corasick
 
    Knuth-Morris-Pratt
 
    Suffix Array/Suffix Tree
 
Math
 
    Basic Math
 
    Big Integer Arithmetic
 
    Number Theory
 
        Chinese Remainder Theorem
 
        Extended Euclid
 
        Inclusion/Exclusion
 
        Modular Arithmetic
 
    Combinatorics
 
        Group Theory/Burnside's lemma
 
        Counting
 
    Probability/Expected Value
 
Others
 
    Tricky
 
    Hardest
 
    Unusual
 
    Brute Force
 
    Implementation
 
    Constructive Algorithms
 
    Two Pointer
 
    Bitmask
 
    Beginner
 
    Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
 
    Greedy
 
    Divide and Conquer
 
Dynamic Programming
                  Tag it!

Did you know that during the ACM-ICPC World Finals a big chessboard is installed every year and is available for the participants to play against each other? In this problem, we will test your basic chess-playing abilities to verify that you would not make a fool of yourself if you advance to the World Finals.
During the yesterday’s Practice Session, you tried to solve the problem of N independent rooks. This time, let’s concentrate on queens. As you probably know, the queens may move not only
horizontally and vertically, but also diagonally.
You are given a chessboard with i−1 queens already placed and your task is to find all squares that may be used to place the i-th queen such that it cannot be captured by any of the others.
 

Input

The input consists of several tasks. Each task begins with a line containing three integer numbers separated by a space: XNand give the chessboard size, 1  X, Y 20 000. i1 is the number of queens already placed, 0  N  X·.
After the first line, there are lines, each containing two numbers xk, yk separated by a space. They give the position of the k-th queen, 1  xk  X, 1  yk  Y . You may assume that those positions are distinct, i.e., no two queens share the same square.
The last task is followed by a line containing three zeros.
 

Output

For each task, output one line containing a single integer number: the number of squares which are not occupied and do not lie on the same row, column, or diagonal as any of the existing queens.
 

Sample Input

  1. 8 8 2
  2. 4 5
  3. 5 5
  4. 0 0 0

Sample Output

  1. 20
  2.  
  3. 解题思路:刚拿到题目的时候用的暴力,结果数组超内存,又用了set,又超时。后来知道,可以只开4个数组来存覆盖情况。即rowcolpiena数组来记录行列和撇捺(对角线情况)。可以发现pie数组由x,y相加减1后得到。na数组可以将y转化为相对于右上角的位置为(Y-y+1)。然后枚举地图中各个点,然后判断该点既不在行列,也不在撇捺(对角线)的情况,记录个数即可。
  4.  
  1. #include<bits/stdc++.h>
  2. using namespace std;
  3. const int maxn=21000;
  4. bool row[maxn],col[maxn],pie[maxn*2],na[maxn*2];
  5. void init(){
  6. memset(row,0,sizeof(row));
  7. memset(col,0,sizeof(col));
  8. memset(pie,0,sizeof(pie));
  9. memset(na,0,sizeof(na));
  10. }
  11. int main(){
  12. int X,Y,n;
  13. while(scanf("%d%d%d",&X,&Y,&n)!=EOF&&(X+Y+n)){
  14. init();
  15. for(int i=0;i<n;i++){
  16. int x,y;
  17. scanf("%d%d",&x,&y);
  18. row[x]=1; //记录该行被覆盖
  19. col[y]=1; //记录该列被覆盖
  20. pie[x+y-1]=1; //记录右上到左下的对角线被覆盖
  21. na[Y-y+x]=1; //记录左上到右下的对角线被覆盖
  22. }
  23. int num=0;
  24. for(int i=1;i<=X;i++){
  25. for(int j=1;j<=Y;j++){
  26. if((!row[i])&&(!col[j])&&(!pie[i+j-1])&&(!na[Y-j+i])){
  27. //枚举各个点,如果行列撇捺都没覆盖,加1
  28. num++;
  29. }
  30. }
  31. }
  32. printf("%d\n",num);
  33. }
  34. return 0;
  35. }

  

BNU4299——God Save the i-th Queen——————【皇后攻击,找到对应关系压缩空间】的更多相关文章

  1. C语言解决八皇后问题

    #include <stdio.h> #include <stdlib.h> /* this code is used to cope with the problem of ...

  2. [题解]N 皇后问题总结

    N 皇后问题(queen.cpp) [题目描述] 在 N*N 的棋盘上放置 N 个皇后(n<=10)而彼此不受攻击(即在棋盘的任一行,任一列和任一对角线上不能放置 2 个皇后) ,编程求解所有的 ...

  3. [算法] N 皇后

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  4. N皇后问题--回溯法

    1.引子 中国有一句古话,叫做“不撞南墙不回头",生动的说明了一个人的固执,有点贬义,但是在软件编程中,这种思路确是一种解决问题最简单的算法,它通过一种类似于蛮干的思路,一步一步地往前走,每 ...

  5. HDU 2553 n皇后问题(回溯法)

     DFS Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Description ...

  6. 52. N-Queens II N皇后II

    网址:https://leetcode.com/problems/n-queens-ii/ 方法1:按照逻辑思路,通过回溯法解决问题.速度较慢! class Solution { public: vo ...

  7. 八皇后问题C语言解法

    偶遇八皇后问题,随即自己写了一个仅供参考 #include<stdio.h> #include<math.h> #define SIZE 8 void Circumsribe( ...

  8. 【搜索】还是N皇后

    先看题才是最重要的: 这道题有点难理解,毕竟Code speaks louder than words,所以先亮代码后说话: #include<iostream> using namesp ...

  9. UVa 11538 Chess Queen (排列组合计数)

    题意:给定一个n*m的棋盘,那么问你放两个皇后相互攻击的方式有多少种. 析:皇后攻击,肯定是行,列和对角线,那么我们可以分别来求,行和列其实都差不多,n*A(m, 2) + m*A(n, 2), 这是 ...

随机推荐

  1. Autofac的Autofac.Core.Activators.Reflection.DefaultConstructorFinder错误解决方案。

    在使用Autofac的时候,不给力,看着例子来的,人家没问题,我就报了Autofac.Core.Activators.Reflection.DefaultConstructorFinder错误. 百般 ...

  2. Kotlin 区间的一些小注意

    1:步进 step 在kotlin 中区间通过循环可以实现每隔几个输出. 比如1..100,我每隔3个输出: fun main(args:Array<Stting>) { .. step) ...

  3. 【转】远程桌面关闭后TeamViewer不能连接

    源地址:http://www.cnblogs.com/qk2014/p/9274852.html 1.本地安装TeamViewer,完成后如下: 2.远程服务器也安装TeamViewer 在本地Tea ...

  4. python3入门之字典

    获得更多资料欢迎进入我的网站或者 csdn或者博客园 本节主要介绍字典,字典也成映射,时python中唯一内建的映射类型.更多详细请点击readmore.下面附有之前的文章: python入门之字符串 ...

  5. python pika简单实现RabbitMQ通信

    Windows上安装及启动RabbitMQ https://blog.csdn.net/hzw19920329/article/details/53156015 安装python pika库 pip ...

  6. abp + angular 前端使用 hash ,登录界面不跳转问题

    abp 项目默认的路由没有使用hash,这会导致手动刷新浏览器时,页面404错误: 解决方法网上很多,就是在路由里添加一个{useHash: true},就行了. #用Hash带来的新问题# abp框 ...

  7. 洛谷 P3191 [HNOI2007]紧急疏散EVACUATE(网络最大流)

    题解 二分答案+Dinic最大流 二分答案\(mid\) 把门拆成\(mid\)个时间点的门 相邻时间的门连一条\(inf\)的边 预处理出每个门到每个人的最短时间 为\(dis[k][i][j]\) ...

  8. vue2.0小小记录

    1.关于路由跳转方法:push this.$router.push({name:'master',params:{id:'参数'}}); //name和params搭配,刷新的话,参数会消失 this ...

  9. POJ - 2891 中国剩余定理

    \(mod\)存在不互素情况下的CRT #include<iostream> #include<algorithm> #include<cstdio> #inclu ...

  10. Oracle之AUTHID CURRENT_USER

    没有AUTHID CURRENT_USER表示定义者权限(definer rights),以定义者身份执行: 加上AUTHID CURRENT_USER表示调用者权限(invoker rights), ...