图的相关算法也算是自己的一个软肋了,当年没选修图论也是一大遗憾。

图像处理中,也有使用图论算法作为基础的相关算法,比如图割,这个算法就需要求最大流、最小割。所以熟悉一下图论算法对于图像处理还是很有帮助的。

Dijkstra和Bellman-Ford类似,都是解决单源最短路径问题,不同的是这个方法只能解决边为非负的问题,实现的好的Dijkstra算法运行时间要快于Bellman-ford。

算法步骤如下:

1.首先设置队列,所有节点入列,源节点值为0,其他节点值为无穷。

2.然后在队列中找值最小的节点并出列。

3.计算出列的节点所有后继节点的距离。

4.松弛方法,如果新计算的距离小于上次计算的距离,那么更新距离,即将后继节点值设为较小的距离,并将后继节点的前趋设为当前的出列节点。

5.对剩余的节点队列继续找最小值并出列,不断循环2、3、4步直到队列中没有节点了。

步骤是上面没错,不过我程序中没有完全按照上述的步骤实现。不同的地方在于我没有做出列操作,而是通过标记节点的形式实现的。

运行结果如下,图(是图不是图片)是算法导论367页上的:

matlab代码如下,netplot和compresstable2matrix和上一篇使用的一样:

main.m

clear all;close all;clc
%初始化邻接压缩表, 表示从节点1到节点2,边的权重为10
b=[ ; ; ;
; ; ;
; ; ;
]; m=max(max(b(:,:))); %压缩表中最大值就是邻接矩阵的宽与高
A=compresstable2matrix(b); %从邻接压缩表构造图的矩阵表示
netplot(A,) %形象表示 S=inf(,m); %从开始的源点到每一个节点的距离
S()=; %源点到自己的距离为0
pa=zeros(,m); %存储每个节点的前驱,在松弛过程中赋值
pa(1)=1;       %源点的前趋是自己 
visit=zeros(,m); %标记某个节点是否访问过了
index=; %从index节点开始搜索 %判断是否对所有节点都找的最短路径了。可能会有源点没有路径到目标节点的情况,那就无限循环了
while sum(visit)~=m %没有出队列操作,不过通过visit来等价的表示了 visit(index)=; %标记第index节点为已入列的节点
[S pa]=relax(S,pa,A,visit,index,m); %松弛,如果两个节点间有更短的距离,则用更短的距离
index=extract_min(S,visit,index,m); %使用已访问的最小的节点作为下一次搜索的开始节点 end
%最终我们需要的就是这两个值
S %源点到其他每一点的距离
pa %其他每一节点的前趋 %算法到此结束,下面只是为了形象的表示而写的。
re=[];
for i=:m
re=[re;pa(i) i A(pa(i),i)];
end
A=compresstable2matrix(re); %从邻接压缩表构造图的矩阵表示
figure;
netplot(A,) %形象表示

relax.m

%边缘松弛,使用更短的距离作为节点的值
function [S pa]=relax(S,pa,A,visit,index,m) i=index;
for j=:m
if A(i,j)~=inf && visit(j)~= %搜索没有标记过的节点
if S(j)>S(i)+A(i,j) %将较小的值赋给正在搜寻的节点
S(j)=S(i)+A(i,j);
pa(j)=i;
end
end
end end

extract_min.m

%提取队列中尚未标记的最小的值的序号
function index=extract_min(S,visit,index,m) Mi=inf;
for j=:m
if visit(j)~=
if S(j)<Mi
Mi=S(j);
index=j;
end
end
end end

matlab练习程序(单源最短路径Dijkstra)的更多相关文章

  1. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  2. 单源最短路径——dijkstra算法

    dijkstra算法与prim算法的区别   1.先说说prim算法的思想: 众所周知,prim算法是一个最小生成树算法,它运用的是贪心原理(在这里不再证明),设置两个点集合,一个集合为要求的生成树的 ...

  3. 单源最短路径 dijkstra算法实现

    本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图.而且连通,有向图,不连通图的做法相似. 算法简述: 首先确定"单源"的源.假设是第0个顶点. 维护三个数组 ...

  4. [数据结构与算法-15]单源最短路径(Dijkstra+SPFA)

    单源最短路径 问题描述 分别求出从起点到其他所有点的最短路径,这次主要介绍两种算法,Dijkstra和SPFA.若无负权优先Dijkstra算法,存在负权选择SPFA算法. Dijkstra算法 非负 ...

  5. 单源最短路径-Dijkstra算法

    1.算法标签 贪心 2.算法描述 具体的算法描述网上有好多,我觉得莫过于直接wiki,只说明一些我之前比较迷惑的. 对于Dijkstra算法,最重要的是维护以下几个数据结构: 顶点集合S : 表示已经 ...

  6. 单源最短路径——Dijkstra算法学习

    每次都以为自己理解了Dijkstra这个算法,但是过没多久又忘记了,这应该是第4.5次重温这个算法了. 这次是看的胡鹏的<地理信息系统>,看完之后突然意识到用数学公式表示算法流程是如此的好 ...

  7. 洛谷P3371单源最短路径Dijkstra堆优化版及优先队列杂谈

    其实堆优化版极其的简单,只要知道之前的Dijkstra怎么做,那么堆优化版就完全没有问题了. 在做之前,我们要先学会优先队列,来完成堆的任务,下面盘点了几种堆的表示方式. priority_queue ...

  8. 洛谷P3371单源最短路径Dijkstra版(链式前向星处理)

    首先讲解一下链式前向星是什么.简单的来说就是用一个数组(用结构体来表示多个量)来存一张图,每一条边的出结点的编号都指向这条边同一出结点的另一个编号(怎么这么的绕) 如下面的程序就是存链式前向星.(不用 ...

  9. 单源最短路径Dijkstra和优先级算法

    百度百科:迪杰斯特拉算法. 代码实现如下: import java.util.Comparator; import java.util.PriorityQueue; import java.util. ...

随机推荐

  1. ThinkPHP5.0的助手函数汇总

    load_trait:快速导入Traits,PHP5.5以上无需调用 /** * 快速导入Traits PHP5.5以上无需调用 * @param string $class trait库 * @pa ...

  2. iptables 深入分析

    四表五链四表:filter , nat, manager, raw五链: 五个HOOK点的链接,pre_rout, foward, post_rout, in ,out 问题:内核如何匹配,内核使能 ...

  3. centos7安装nslookup工具、ntp工具

    2018-12-13 centos7安装nslookup工具 yum install bind-utils -y DNS解析localhost到本机 # .检测 [root@node2 ~]# nsl ...

  4. 向一个GitHub repository添加协作者

    第一步: 在协作者的机器(就是你的电脑啦)上创建一个ssh key (使用命令ssh-keygen) 第二步: 创建一个github账户 第三步: 把public-key添加到你的github用户账户 ...

  5. (转)netstat 命令详解

    netstat 命令详解  原文:https://www.cnblogs.com/xieshengsen/p/6618993.html netstat命令是一个监控TCP/IP网络的非常有用的工具,它 ...

  6. 017-Servlet抽取时的BaseServlet模板代码

    package www.test.web.servlet; import java.io.IOException; import java.lang.reflect.Method; import ja ...

  7. 【程序员技术练级】学习一门脚本语言 python(三)跟数据库打交道

    接着上一篇,该篇讲述使用python对数据库进行基本的CRUD操作,这边以sqlite3为例子,进行说明.sqlite3 是一个非常轻型的数据库,安装和使用它是非常简单的,这边就不进行讲述了. 在py ...

  8. JNI与NDK的区别

    JNI是Java调用Native机制,是Java语言自己的特性全称为Java Native Interface,类似的还有微软.Net Framework上的p/invoke,可以让C#或Visual ...

  9. PHP邮件发送

    php带有内置的mail() 发送邮件函数,但是较为繁琐:建议上网下载一个PHPMailer:

  10. Windows 10 下彻底关闭 Hyper-V 服务

    由于最近需要用到VMWare Workstation 安装虚拟机,安装完成后,发现任何64位的系统都不能正常安装.可能是Hyper-V与VMWare Workstation的冲突造成的不兼容,所以就去 ...