【SinGuLaRiTy-1038】 Copyright (c) SinGuLaRiTy 2017. All Rights Reserved.

Arithmetic of Bomb

Problem Description

众所周知,度度熊非常喜欢数字。

它最近在学习小学算术,第一次发现这个世界上居然存在两位数,三位数……甚至N位数!

但是这回的算术题可并不简单,由于含有表示bomb的#号,度度熊称之为 Arithmetic of Bomb。

Bomb Number中的bomb,也就是#号,会展开一些数字,这会导致最终展开的数字超出了度度熊所能理解的范畴。比如”(1)#(3)”表示”1”出现了3次,将会被展开为”111”,

同理,”(12)#(2)4(2)#(3)”将会被展开为”12124222”。

为了方便理解,下面给出了Bomb Number的BNF表示。

```

<bomb number> := <bomb term> | <bomb number> <bomb term>

<bomb term> := <number> | '(' <number> ')' '#' '(' <non-zero-digit> ')'

<number> := <digit> | <digit> <number>

<digit> := '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

<non-zero-digit> := '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

```

请将Bomb Number中所有的#号展开,由于数字可能很长,结果对 1 000 000 007 取模。

Input

第一行为T,表示输入数据组数。

每组数据包含一个Bomb Expression。

- 1≤T≤100

- 1≤length(Bomb Number)≤1000

Output

对每组数据输出表达式的结果,结果对 1 000 000 007 取模。

Sample Input

4

1

(1)#(3)

(12)#(2)4(2)#(3)

(12)#(5)

Sample Output

1

111

12124222

212121205

Code

模拟,签到题不解释。

#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<algorithm> #define ll long long
#define inf 0x3f3f3f3f
#define maxn 101000
#define MOD 1000000007 using namespace std; int read()
{
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
} int n;
char s[maxn],ans[maxn],nows[maxn]; int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%s",s+);
int n=strlen(s+);
int nowstep=,len=,tot=;
for(int i=;i<=n;i++)if(isdigit(s[i]))
{
if(nowstep==){nows[++len]=s[i];}
else
if(nowstep==)
{
for(int j=;j<=s[i]-'';j++)
for(int k=;k<=len;k++)
ans[++tot]=nows[k];
len=;nowstep=;
}
else
if(nowstep==)ans[++tot]=s[i];
}
else
{
if(nowstep==&&s[i]=='(')
nowstep=;
else if(nowstep==&&s[i]==')')
nowstep=;
}
long long ansnum=;
for(int i=;i<=tot;i++)
ansnum=(ansnum*+ans[i]-'')%MOD;
printf("%lld\n",ansnum);
}
return ;
}

Arithmetic of Bomb II

Problem Descroption

众所周知,度度熊非常喜欢数字。
它最近在学习小学算术,沉迷于计算A+B中不能自拔。
但是这回的算术题可并不简单,由于含有表示bomb的#号,度度熊称之为 Arithmetic of Bomb。

Arithmetic of Bomb的目的与普通算术一样,就是计算一些Bomb Expression的结果。比如,”1-2+3”的结果为2。然而,bomb,也就是#号,会展开一些普通表达式,这会导致需要计算的式子超出了度度熊所能理解的范畴。比如”(1-2+3)#(3)”表示”1-2+3”出现了3次,将会被展开为”1-2+31-2+31-2+3”。
为了方便理解,下面给出了Bomb Expression的BNF表示。
```
<bomb expression> := <bomb term> | <bomb expression> <bomb term>
<bomb term> := <bomb statement> | '(' <bomb statement> ')' '#' '(' <number> ')'
<bomb statement> := <bomb element> | <bomb statement> <bomb element>
<bomb element> := <digit> | '+' | '-' | '*'
<normal expression> := <norm term> | <normal expression> '+' <norm term> | <normal expression> '-' <norm term>
<norm term> := <number> | <norm term> '*' <number>
<number> := <digit> | <non-zero-digit> <number>
<digit> := '0' | <non-zero-digit>
<non-zero-digit> := '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
```
请先将Bomb Expression中所有的#号展开,使其成为Normal Expression(题目的输入保证展开后是一个合法的Normal Expression),再来计算这个表达式的结果。

Input

第一行为T,表示输入数据组数。
每组数据包含一个Bomb Expression。
●1≤T≤50
●1≤length(Bomb Statement)≤10
●1≤length(Number in Bomb term)≤10
●1≤length(Bomb Expression)≤300 000

Output

对每组数据输出表达式的结果,结果对 1 000 000 007 取模。

Sample Input

6
1-2+3
(1-2+3)#(3)
(1)#(3)
(1+)#(2)1
(2*3+1)#(2)
(2)#(2)1+1(2)#(2)

Sample Output

2
60
111
3
43
343

Code

我还不会矩阵运算呀,只好先在这里放一放大牛的代码了(能做出这道题的确佩服!)

【本题题解来自于:y5zsq

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
#define maxn 300005
#define mod 1000000007
vector<string>term;
vector<ll>num;
char c[maxn];
int T;
void Deal()
{
term.clear(),num.clear();
int n=strlen(c);
for(int i=;i<n;)
{
string s;
if(c[i]=='(')
{
i++;
while(c[i]!=')')s.push_back(c[i++]);
i+=;
ll t=;
while(c[i]!=')')t=t*+c[i++]-'';
if(t)term.push_back(s),num.push_back(t);
i++;
}
else
{
while(i<n&&c[i]!='(')s.push_back(c[i++]);
term.push_back(s),num.push_back();
}
}
}
typedef ll Mat[][];
Mat A,B,C;
void Mul(Mat &a,Mat b)
{
Mat c;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
c[i][j]=;
for(int k=;k<;k++)
c[i][j]+=a[i][k]*b[k][j];
}
for(int i=;i<;i++)
for(int j=;j<;j++)
a[i][j]=(c[i][j]%mod+mod)%mod;
}
void Pow(Mat &a,ll b)
{
if(b==)return ;
Mat c;
for(int i=;i<;i++)
for(int j=;j<;j++)
c[i][j]=(i==j);
while(b)
{
if(b&)Mul(c,a);
Mul(a,a);
b>>=;
}
for(int i=;i<;i++)
for(int j=;j<;j++)
a[i][j]=c[i][j];
}
ll Count()
{
for(int i=;i<;i++)
for(int j=;j<;j++)
A[i][j]=(i==j);
int sign=;
for(int k=;k<term.size();k++)
{
string s=term[k];
ll t=num[k];
int n=s.size();
for(int i=;i<;i++)
for(int j=;j<;j++)
B[i][j]=(i==j);
for(int i=;i<n;i++)
{
memset(C,,sizeof(C));
C[][]=C[][]=;
if(s[i]>=''&&s[i]<='')
C[][]=,C[][]=s[i]-'',C[][]=;
else if(s[i]=='+')
C[][]=sign,C[][]=,sign=;
else if(s[i]=='-')
C[][]=sign,C[][]=,sign=-;
else C[][]=;
Mul(B,C);
}
Mul(A,B);
if(t>)
{
for(int i=;i<;i++)
for(int j=;j<;j++)
B[i][j]=(i==j);
for(int i=;i<n;i++)
{
memset(C,,sizeof(C));
C[][]=C[][]=;
if(s[i]>=''&&s[i]<='')
C[][]=,C[][]=s[i]-'',C[][]=;
else if(s[i]=='+')
C[][]=sign,C[][]=,sign=;
else if(s[i]=='-')
C[][]=sign,C[][]=,sign=-;
else C[][]=;
Mul(B,C);
}
Pow(B,t-);
Mul(A,B);
}
}
ll ans=(A[][]+A[][])%mod;
if(sign==)ans=(ans+A[][]+A[][])%mod;
else ans=(ans-A[][]-A[][])%mod;
ans=(ans+mod)%mod;
return ans;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",c);
Deal();
printf("%I64d\n",Count());
}
return ;
}

Pokémon GO

Problem Description

众所周知,度度熊最近沉迷于 Pokémon GO。

今天它决定要抓住所有的精灵球!
为了不让度度熊失望,精灵球已经被事先放置在一个2*N的格子上,每一个格子上都有一个精灵球。度度熊可以选择任意一个格子开始游戏,抓捕格子上的精灵球,然后移动到一个相邻的至少有一个公共点的格子上继续抓捕。例如,(2, 2) 的相邻格子有(1, 1), (2, 1) 和 (1, 2) 等等。
现在度度熊希望知道将所有精灵球都抓到并且步数最少的方案数目。两个方案被认为是不同,当且仅当两个方案至少有一步所在的格子是不同的。

Input

第一行为T,表示输入数据组数。
每组数据包含一个数N。
●1≤T≤100
●1≤N≤10000

Output

对每组数据输出方案数目,结果对 1 000 000 007 取模。

Sample Input

3
1
2
3

Sample Input

2
24
96

Code

动态规划

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cstring> #define ll long long
const int maxn=,MOD=; ll a[maxn],b[maxn],n; int main()
{
b[]=;
for(int i=;i<=maxn;i++)
b[i]=(b[i-]*)%MOD;
a[]=;
a[]=;
for(int i=;i<=maxn;i++)
a[i]=(*a[i-]+b[i]+*a[i-])%MOD;
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
ll ans=;
for(int i=;i<=n-;i++)
ans=(ans+*b[i-]%MOD*a[n-i])%MOD;
ans=(ans+*a[n])%MOD;
if(n==)
ans=;
printf("%lld\n",ans);
}
return ;
}

Pokémon GO II

Problem Description

众所周知,度度熊最近沉迷于 Pokémon GO。

由于太过沉迷,现在它只能按照游戏内置的指令行走了:对,简直就像一个现实中的Pokémon!
游戏内置的指令实际上可以抽象成一种:保持现在的朝向前行X米,然后右转。度度熊相信,只要遵循这个指令,它就一定可以抓到最珍奇的精灵球。
但不幸的是,这个指令并不是很有可信度,有时会引导度度熊走回原来的位置。现在它想知道,在第几条指令时它第一次回到已经走过的位置?如果这种情况没有发生,请输出 “Catch you”。

Input

第一行为T,表示输入数据组数。
每组数据的第一行包含一个数N,表示指令长度。接着的一行包含N个数字Xi,表示第i个指令中前行的距离。
● 1≤T≤100
● 1≤N≤1 000 000
● 1≤Xi≤1 000 000 000

Output

对每组数据输出第一次回到已经走过的位置时的指令下标i (1≤i≤N)。
如果这种情况没有发生,请输出 “Catch you”。

Sample Input

3
4
2 2 2 2
4
2 1 3 1
5
2 1 3 1 3

Sample Output

4
Catch you
5

Code

目测几何神犇题,发现可以画画图找规律......第一次覆盖一定发生在轨迹的前8段中。

#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstdlib> #define MAXN 1000010 using namespace std; const int dx[]={,,,-},dy[]={,,-,};
int N,a[MAXN]; struct Point
{
int x,y;
Point(int _x=,int _y=):x(_x),y(_y){}
}points[MAXN]; bool overlap(int a,int b,int c,int d)
{
if(a>b)
swap(a, b);
if(c>d)
swap(c, d);
return !(b<c||d<a);
} bool intersect(Point a1,Point a2,Point b1,Point b2)
{
bool is_vertical_a=(a1.x==a2.x),is_vertical_b=(b1.x==b2.x);
if(is_vertical_a && is_vertical_b)
return a1.x==b1.x&&overlap(a1.y,a2.y,b1.y,b2.y);
if(!is_vertical_a && !is_vertical_b)
return a1.y==b1.y&&overlap(a1.x,a2.x,b1.x,b2.x);
if(is_vertical_a)
{
swap(a1,b1);
swap(a2,b2);
}
return !(max(a1.x,a2.x)<b1.x||min(a1.x,a2.x)>b1.x||max(b1.y,b2.y)<a1.y||min(b1.y,b2.y)>a1.y);
} int solve()
{
int x=,y=;
for(int i=;i<N;++i)
{
x+=dx[i&]*a[i];
y+=dy[i&]*a[i];
points[i+].x=x;
points[i+].y=y;
for(int j=max(,i-);j<i-;++j)
if(intersect(points[j],points[j+],points[i],points[i+]))
return i;
}
return -;
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d",&N);
for(int i=;i<N;++i)
scanf("%d",a+i);
int result=solve();
if(result==-)
printf("Catch you\n");
else
printf("%d\n", result+);
}
return ;
}

Valley Numer

Problem Description

众所周知,度度熊非常喜欢数字。
它最近发明了一种新的数字:Valley Number,像山谷一样的数字。

当一个数字,从左到右依次看过去数字没有出现先递增接着递减的“山峰”现象,就被称作 Valley Number。它可以递增,也可以递减,还可以先递减再递增。在递增或递减的过程中可以出现相等的情况。
比如,1,10,12,212,32122都是 Valley Number。
121,12331,21212则不是。
度度熊想知道不大于N的Valley Number数有多少。
注意,前导0是不合法的。

Input

第一行为T,表示输入数据组数。
每组数据包含一个数N。
● 1≤T≤200
● 1≤length(N)≤100

Output

对每组数据输出不大于N的Valley Number个数,结果对 1 000 000 007 取模。

Sample Input

3
3
14
120

Sample Input

3
14
119

Code

记忆化搜索/数位DP

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#define ll long long
using namespace std;
const ll maxn=,MOD=;
ll f[maxn][][],a[maxn],n;
char s[maxn]; ll dfs(ll pos,ll state,ll limit,ll pre)
{
if(pos==-)
{
if(~pre)
return ;
else
return ;
}
if(!limit&&~pre&&~f[pos][state][pre])
return f[pos][state][pre];
ll up=limit?a[pos]:;
ll ans=;
for(int i=;i<=up;i++)
{
if(pre==-&&i==)
ans=(ans+dfs(pos-,state,limit&&i==up,pre))%MOD;
else if(pre==-&&i!=)
ans=(ans+dfs(pos-,state,limit&&i==up,i))%MOD;
else if(state==)
ans=(ans+dfs(pos-,i>pre,limit&&i==up,i))%MOD;
else if(state==&&i>=pre)
ans=(ans+dfs(pos-,state,limit&&i==up,i))%MOD;
}
if(!limit&&~pre)
f[pos][state][pre]=ans;
return ans;
} int main()
{
ll T;
scanf("%lld",&T);
memset(f,-,sizeof(f));
while(T--)
{
scanf("%s",s+);
n=strlen(s+);
for(int i=;i<=n;i++)
a[n-i]=s[i]-'';
printf("%lld\n",dfs(n-,,,-));
}
return ;
}

Valley Numer II

Problem Description

众所周知,度度熊非常喜欢图。
它最近发现了图中也是可以出现 valley —— 山谷的,像下面这张图。

为了形成山谷,首先要将一个图的顶点标记为高点或者低点。标记完成后如果一个顶点三元组<X, Y, Z>中,X和Y之间有边,Y与Z之间也有边,同时X和Z是高点,Y是低点,那么它们就构成一个valley。
度度熊想知道一个无向图中最多可以构成多少个valley,一个顶点最多只能出现在一个valley中。

Input

第一行为T,表示输入数据组数。
每组数据的第一行包含三个整数N,M,K,分别表示顶点个数,边的个数,标记为高点的顶点个数。
接着的M行,每行包含两个两个整数Xi,Yi,表示一条无向边。
最后一行包含K个整数Vi,表示这些点被标记为高点,其他点则都为低点。
● 1≤T≤20
● 1≤N≤30
● 1≤M≤N*(N-1)/2
● 0≤K≤min(N,15)
● 1≤Xi, Yi≤N, Xi!=Yi
● 1≤Vi≤N

Output

对每组数据输出最多能构成的valley数目。

Sample Input


View Sample Input

Sample Output

1
0
2

Code

状压DP

#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<algorithm> #define ll long long using namespace std; int read()
{
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
} const int inf=0x3f3f3f3f,maxn=,maxk=; int n,f[][maxk],c,k,m,hi[maxn];
bool Map[maxn][maxn],high[maxn]; void dfs(int dep,int now,int pre,int cyc,int x)
{
if(dep==)
f[now][c]=max(f[now][c],f[pre][cyc]+);
else
for(int i=;i<=k-;i++)
if(Map[x][hi[i+]]&&!(c&(<<i)))
{
c|=(<<i);
dfs(dep+,now,pre,cyc,x);
c^=(<<i);
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
n=read();m=read();k=read();
int u,v;
memset(Map,,sizeof(Map));
for(int i=;i<=m;i++)
{
u=read();v=read();
Map[u][v]=Map[v][u]=;
}
memset(high,,sizeof(high));
for(int i=;i<=k;i++)
{
u=read();
high[u]=;
}
int nowk=;
for(int i=;i<=n;i++)if(high[i])hi[++nowk]=i;
k=nowk;
memset(f,,sizeof(f));
int x=;
for(int i=;i<=n;i++)if(!high[i])
{
x=-x;
memset(f[x],,sizeof(f[x]));
for(int j=;j<(<<k);j++)
{
f[x][j]=max(f[x][j],f[-x][j]);
c=j;
dfs(,x,-x,j,i);
}
}
int ans=;
for(int i=;i<(<<k);i++)ans=max(ans,f[x][i]);
printf("%d\n",ans);
}
return ;
}

Time: 2017-08-24

[SinGuLaRiTy] 2017 百度之星程序设计大赛 复赛的更多相关文章

  1. 2017"百度之星"程序设计大赛 - 复赛1005&&HDU 6148 Valley Numer【数位dp】

    Valley Numer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  2. 2017"百度之星"程序设计大赛 - 复赛1003&&HDU 6146 Pokémon GO【数学,递推,dp】

    Pokémon GO Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  3. 2017"百度之星"程序设计大赛 - 复赛1001&&HDU 6144 Arithmetic of Bomb【java大模拟】

    Arithmetic of Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. 2017"百度之星"程序设计大赛 - 复赛 01,03,05

    Arithmetic of Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. [SinGuLaRiTy] 2017 百度之星程序设计大赛 初赛A

    [SinGuLaRiTy-1036] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 小C的倍数问题 Time Limit: 2000/100 ...

  6. [SinGuLaRiTy] 2017 百度之星程序设计大赛 初赛B

    [SinGuLaRiTy-1037] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. Chess Time Limit: 2000/1000 ...

  7. [SinGuLaRiTy] 2017 百度之星程序设计大赛-资格赛

    [SinGuLaRiTy-1034] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. 度度熊保护村庄  Time Limit: 2000/10 ...

  8. 2017百度之星程序设计大赛 - 复赛 Arithmetic of Bomb

    http://acm.hdu.edu.cn/showproblem.php?pid=6144 解法:一个简单的模拟 #include <bits/stdc++.h> using names ...

  9. 2017"百度之星"程序设计大赛 - 复赛

    Arithmetic of Bomb  Accepts: 1050  Submissions: 1762  Time Limit: 2000/1000 MS (Java/Others)  Memory ...

随机推荐

  1. Oray.com花生壳路由器配置注意

    当路由器不链接wan口,只链接lan口时,此路由器其实就是当做一个无线交换机使用了,在此种情况下,花生壳登录会失败,因为花生壳本身也认为这设备不是路由器.

  2. Python之购物商场

    作业:购物商场 1.流程图 2.初始化用户账号存储文件 初始化存储一个空的用户账号字典,保存到文件 user.pkl.执行如下代码,即可初始化完成. #!/usr/bin/env python # - ...

  3. CSS 透明

    filter:alpha(opacity=60);-moz-opacity:0.5;opacity: 0.5;

  4. Python基础学习三 字典、元组

    一.元组 元组,提示别人,这个值是不能被改变的,元组的定义方式是用(),小括号: 元组只有两个方法,那就是count和index mysql1 = ('127.0.0.1',3306,'my','ro ...

  5. 【原】Coursera—Andrew Ng机器学习—Week 3 习题—Logistic Regression 逻辑回归

    课上习题 [1]线性回归 Answer: D A 特征缩放不起作用,B for all 不对,C zero error不对 [2]概率 Answer:A [3]预测图形 Answer:A 5 - x1 ...

  6. Dubbo管理中心部署

    我们在开发时,需要知道注册中心都注册了哪些服务,以便我们开发和测试.我们可以通过部署一个管理中心来实现.其实管理中心就是一个web应用,部署到tomcat即可. 管理端的部署: 1,首先我们要编译源码 ...

  7. Leetcode:Divide Two Integers分析和实现

    题目要求我们用一个32位整数整除另外一个整数,但是不允许我们使用除法,乘法和取模运算. 有趣的问题,下面说一下我的思路: 首先,先给出两个正整数除法运算的过程.假设a为被除数,而b为除数.在计算机中无 ...

  8. 值得一做》一道类似于货车运输的题目(BZOJ3732)(easy+)

    这是一道模板套模板的题目,只要会LCA和最小生成树就可以做,水题 直接先甩题目 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条 ...

  9. Lambda03 方法引用、类型判断、变量引用

    1 方法引用 1.1 方法引用的好处 方法引用结合 Lambda 可以引用已存在的方法,省略很多编码,而且可读性更强,它可以自动装配参数与返回值. 在编写lambda表达式的时候可以通过方法引用的方式 ...

  10. 7-python自定义opener

    Handler处理器 和 自定义Opener opener是 urllib2.OpenerDirector 的实例,我们之前一直都在使用的urlopen,它是一个特殊的opener(也就是模块帮我们构 ...