题面

Description

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。下面是一颗有 4 个树枝的树。

2 5

\ /

3 4

\ /

1

Input

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。N表示树的结点数,Q表示要保留的树枝数量。

接下来N-1行描述树枝的信息,每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

Output

剩余苹果的最大数量。

Sample Input

5 2

1 3 1

1 4 10

2 3 20

3 5 20

Sample Output

21

题解

这道题很久,很久,很久以前,我是会做的

但是,今天,我再看,我这个小蒟蒻因为太垃圾了,所以不会做了。(迷茫)

于是,我决定很详细的写一写

首先定义状态

f[i][j]表示,以i为根节点,剩余j根树枝的时候的最大苹果树

那么状态的转移我们可以考虑一下

对于当前的f[i][j]而言,

f[i][j]=max{f[son][j-k]+f[i][k-1]+w[edge]}

其中w是边权,son是子节点

为什么?

对于一棵子树,当其保留j根枝条的时候

显然两棵子树可以分别保留 k-1,j-k 根枝条

因此,就有了上面的公式

好了,接下来就是代码。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
#define MAX 200
int f[MAX][MAX];
int n,q;
vector<int> e[MAX],w[MAX];
//f[i][j]表示以i为根节点的子树,剩余j根枝条时,剩余的最大苹果数
int build(int u,int ff)//建树,并求解
{
int son=0;
for(int i=0;i<e[u].size();++i)
{
int v=e[u][i];
if(v==ff)continue;
son+=build(v,u)+1;//统计子节点
for(int j=min(son,q);j;--j)
for(int k=min(j,q);k;--k)
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k-1]+w[u][i]);
}
return son;
}
int main()
{
cin>>n>>q;
int u,v,x;
for(int i=1;i<n;++i)
{
cin>>u>>v>>x;
e[u].push_back(v);
e[v].push_back(u);
w[u].push_back(x);
w[v].push_back(x);
//tot+=c;
}
build(1,1);
cout<<f[1][q]<<endl;
return 0;
}

【洛谷2015】【CJOJ1976】二叉苹果树的更多相关文章

  1. 【洛谷P2015】二叉苹果树

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...

  2. 洛谷 P2015 二叉苹果树 (树上背包)

    洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...

  3. 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解

    二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...

  4. CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划)

    CJOJ 1976 二叉苹果树 / URAL 1018 Binary Apple Tree(树型动态规划) Description 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的 ...

  5. Luogu_2015 二叉苹果树

    题目链接 SB 裸题……就是想随便挂在这里……同样的题还有 Luogu_2014 选课. Luogu_2015 二叉苹果树 #include <queue> #include <cs ...

  6. 二叉苹果树|codevs5565|luoguP2015|树形DP|Elena

    二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的 ...

  7. P2015 二叉苹果树

    P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...

  8. Loj10153 二叉苹果树

    题目描述 有一棵二叉苹果树,如果数字有分叉,一定是分两叉,即没有只有一个儿子的节点.这棵树共 NN 个节点,标号 11 至 NN,树根编号一定为 11. 我们用一根树枝两端连接的节点编号描述一根树枝的 ...

  9. P2015 二叉苹果树,树形dp

    P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...

  10. [Luogu2015]二叉苹果树(树形dp)

    [Luogu2015] 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. ...

随机推荐

  1. 【Tools】Pycharm2017 windows安装与修改中文界面教程

    [windows] 1.到官网下载Pycharm最新版 https://www.jetbrains.com/pycharm/download/#section=windows 2.安装激活 Pycha ...

  2. U盘制作centos7系统并安装

    U盘刻录步骤 1.下载centos镜像(https://mirrors.aliyun.com/centos/7.4.1708/isos/x86_64/) 2.使用UltraISO刻录U盘启动系统 安装 ...

  3. mysqldump 备份导出数据排除某张表

    就用 --ignore-table=dbname.tablename参数就行,可以忽略多个. /usr/bin/mysqldump -- -uroot -p123456 dbname --ignore ...

  4. phpstorm及webstorm密钥

    选用 server 方式,输入地址:http://idea.iteblog.com/key.php http://idea.lanyus.com/

  5. 机器学习实战 之 KNN算法

    现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于pyt ...

  6. .NET Core阿里大于短信发送SDK修改以及使用

    一.问题背景 继上次七牛云SDK的问题之后(参考:http://www.cnblogs.com/OMango/p/8447480.html),在发送短信的功能上又出现了问题,我们短信服务使用的是阿里大 ...

  7. EmguCV 绘画图形

    1.Image类中绘图常用函数列表 实践验证 ///初始化图片 private void Form1_Load(object sender, EventArgs e) { oldpic = new E ...

  8. PAT1078 Hashing 坑爹

    思路:用筛法给素数打表,二次探测法(只需要增加的)–如果的位置被占,那么就依次探测. 注意:如果输入的,这也不是素数:如果,你需要打表的范围就更大了,因为不是素数. AC代码 #include < ...

  9. 对于JAVA程序优化的一些想法,读书有感.治疗强迫症良药

    在深入了解Java虚拟机里读到:在try{}块里面执行代码,比if(x!=null)效率要高,前提是被catch的几率很低的情况下. 但是 在Effective Java里读到:因为异常机制的设计初衷 ...

  10. ElasticSearch AggregationBuilders java api常用聚会查询

    以球员信息为例,player索引的player type包含5个字段,姓名,年龄,薪水,球队,场上位置.index的mapping为: "mappings": { "pl ...